Acknowledgement
본 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(NRF-2022R1F1A1075167)을 받아 수행되었음.
References
- Riyang, Y., Tianfu, S., Shaojia, H., Wei, F., Jianing, L., and Yang, C., 2021, "Online Full-parameter Estimation of SynRM Based on the RLS and LMS Algorithm," 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), pp. 389~293.
- Kewllen, O., BangHung, T., Luis, H., and Chad, M., 2019, "Recursive Least Squares Parameter Estimation for DC Fault Detection and Localization," 2019 IEEE National Aerospace and Electronics Conference (NAECON), pp. 7~10.
- Singh, V., Pal, B., and Jain, T. 2020, "State and parameter estimation for spark ignition engine with parameter uncertainty," In 2020 28th Mediterranean Conference on Control and Automation (MED), pp. 502~507.
- Zhao, Y., Vaddi, P. K., Pietrykowski, M., Khafizov, M., and Smidts, C., 2023, "An empirical study of the added value of the sequential learning of model parameters to industrial system health monitoring," Reliability Engineering and System Safety, 109592.
- Bhuiyan, M. H. R., Arafat, I. M., Rahaman, M., Toha, T. R., and Alam, S. M. M., 2022, "Towards devising a vibration based machinery health monitoring system," Materials Today: Proceedings, pp. 2490~2496.
- Dang, H. V., Tran-Ngoc, H., Nguyen, T. V., Bui-Tien, T., De Roeck, G., and Nguyen, H. X., 2020, "Data-driven structural health monitoring using feature fusion and hybrid deep learning," IEEE Transactions on Automation Science and Engineering, pp. 2087~2103.