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Introduction   

In institutional food service, the allocation and consumption 
of food portions often reflect individual preferences despite 
dietitians' efforts to ensure a balanced diet. This scenario 
presents a unique challenge in group meal provision, which aims 
to meet diverse dietary needs while maintaining nutritional 
balance (National Academies of Sciences, Engineering, and 
Medicine 2016; Peano et al. 2022; Yeom & Choi 2023).

Carbohydrates, as a major energy source, constitute approximately 
55~65% of daily energy intake (Korean Nutrition Society 2020). 
This nutrient plays a critical role in the functioning of various 
organs, such as the brain, red blood cells, retina, lens, and renal 
medulla, which predominantly utilize glucose as their primary 
energy substrate. Therefore, maintaining a consistent blood 
glucose level is imperative for the optimal functioning of these 
organs, highlighting the necessity for regular carbohydrate 

consumption. This dietary requirement underscores the importance 
of carbohydrates in the human diet, particularly in relation to 
maintaining the energy demands of critical bodily functions 
(Kim MH 2013; Stubbs RJ 2021; Pan et al. 2023; Wali et al. 
2023).

The proportion of energy intake from carbohydrates is closely 
associated with chronic diseases. Patients diagnosed with 
hypertension, metabolic syndrome, and diabetes tend to derive 
over 70% of their total energy from carbohydrates, a trend 
particularly pronounced among individuals over the age of 60. 
In a study targeting adults and the elderly over 40 in Korea, it 
was found that those with a carbohydrate energy intake ratio 
exceeding 65% had a 1.18 times higher likelihood of being at 
high risk for cardiovascular diseases compared to those with a 
ratio of 55~65% (Hou et al. 2022).

While many studies have reported positive correlations 
between low-carbohydrate, high-fat diets and health benefits, par-
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ticularly in terms of lower overall calorie intake, recent research 
on long-term health maintenance has shown varying results. 
Consequently, the importance of adequate energy intake and 
appropriate carbohydrate consumption is being emphasized. This 
growing interest among those responsible for meal planning 
reflects an increased awareness of the role of balanced 
carbohydrate intake in overall health and nutrition (Yang et al. 
2022; Santamarina et al. 2023).

There are various methods for measuring food intake. First, 
there is the traditional method of directly measuring with a scale. 
This method offers high accuracy and reliability, but it is 
time-consuming, has limitations in portability, and does not 
provide information beyond weight. Second, there are methods 
using machines. For example, scanning food with a photo to 
measure volume and convert it to weight is a hygienic, 
contactless method that can quickly process large quantities of 
food. However, it may lack accuracy, be costly, and be 
influenced by environmental factors. Additionally, there is the 
method of using trained models to perform automated 
measurements, which offers high scalability and precision but 
requires a large amount of data and a complex training process.

Currently, various deep learning models and systems are 
utilized for nutrition management worldwide. For example, 
studies utilizing FoodAI in the United States and the 
UECFood100 and UECFood256 datasets in Japan have been 
actively conducted, focusing primarily on food image recognition 
and classification (Sahoo et al. 2019; Kawano & Yanai 2014). 
However, these models are not capable of directly analyzing 
food intake, and additional data and analytical techniques are 
required to achieve this. 

In Korea, certain services have gained attention for using 
computer vision to measure the image and volume of food. 
Computer vision employs traditional image analysis techniques, 
analyzing images through manually defined algorithms (Bolaños 
& Radeva 2016). In contrast, Convolutional Neural Networks 
(CNNs), a deep learning-based approach, automatically extract 
and analyze complex features from images through data training. 
Although CNNs require more data, they excel in solving more 
complex problems (Sandler et al. 2018).

Despite the availability of various tools for meal management 
and food intake surveys, most methods involve manually 
entering food names and quantities to calculate calorie and 
nutrient intake (Kalivaraprasad et al. 2021). As smartphones 

have become more widespread, capturing images has become 
easier, leading to increased demand for image-based calorie 
estimation. However, research on applying artificial intelligence 
to extract characteristics from images, estimate weight, and 
calculate nutrient intake remains insufficient (Mezgec et al. 
2017; Vasiloglou et al. 2018; Cai et al. 2019; Lu et al. 2020; 
Fragopoulou et al. 2021; Matusheski et al. 2021).

CNNs play a crucial role in object detection (identifying 
specific objects within an image) and object segmentation 
(distinguishing objects from the background in an image). 
Despite these advancements, the efficiency of training and 
validation can vary significantly depending on the characteristics 
of the images. Therefore, it is challenging to determine the exact 
number of images required to achieve the desired accuracy 
before conducting a study. Nonetheless, having more data 
generally contributes to improving the accuracy of results.

Object Detection Models: SSD (Single Shot Multibox 
Detector) scans an image once and identifies objects within it 
efficiently. R-CNN (Region-based convolutional Neural 
Network) identifies potential areas where objects might be 
located and then closely examines these areas to identify the 
objects, akin to first spotting interesting regions in a photo and 
then zooming in to see what is there. These models use 
pre-trained CNNs such as VGGNet, ResNet, ResNeXt, 
MobileNet, and AlexNet as backbones, which demonstrate strong 
efficiency in extracting image characteristics due to their 
powerful and well-optimized architectures (Girshick et al. 2014; 
Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al. 
2016; Liu et al. 2016; Chollet F 2017; Howard et al. 2017; 
Huang et al., 2017; Tan & Le 2019).

Object Segmentation Models: Models like U-Net, FCN (Fully 
Convolutional Network), and DeepLab are used to separate 
objects from the background in an image, such as distinguishing 
a person from the surrounding scenery. These models also utilize 
pre-trained CNNs like VGGNet, ResNet, EfficientNet, and 
Xception for feature extraction, directly influencing the 
performance of object detection and segmentation (Ronneberger 
et al. 2015; Chen et al. 2017).

The optimal structure of a CNN can be tailored according to 
the characteristics of the image, such as texture and color. More 
complex image features require deeper and more complex CNNs. 
Additionally, the optimal combination of filter size and number, 
pooling layers, types of optimizers, and the application of 
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dropout significantly enhances the accuracy of image feature 
extraction.

This study aims to identify the optimal CNN model for 
analyzing the amount of rice on a serving tray. To achieve this, 
two approaches are used as illustrated in Fig. 1: first, a vanilla 
CNN trained from scratch using new image datasets; and second, 
a pre-trained CNN fine-tuned with our specific data. The 
performance of image feature extraction in all networks varies 
significantly depending on the optimizer, type of pooling, 
application of image augmentation, dropout, and network size. 
Therefore, deriving optimal conditions tailored to specific image 
characteristics is crucial.

Such a personalized monitoring system is vital for efficient 
meal management. It helps reduce rice wastage, ensures that only 
the necessary amount is prepared, and achieves cost savings. 
Additionally, it enables the provision of customized diets that 
consider individual eating habits. This study focuses on 
developing the optimal neural network model to achieve these 
objectives.

Subjects and Methods

1. Building image datasets
For the purpose of deriving the optimal CNN for extracting 

features from images based on the grain serving sizes on a white 
tray, we have captured and secured image data for training and 
validating the CNN. As illustrated in Fig. 2, this dataset 
encompasses seven different labels corresponding to rice serving 

sizes of 0 g (0 kcal), 70 g (100 kcal), 140 g (200 kcal), 210 
g (300 kcal), 280 g (400 kcal), 350 g (500 kcal), and 420 g 
(600kcal). Each label represents a distinct amount of grain 
served on the tray, allowing for a comprehensive evaluation of 
the CNN's ability to accurately extract features related to varying 
quantities of grain servings.

A total of 630 images were captured and used in this study, 
with each image being set to a resolution of 224×224 pixels. The 
entire image dataset was randomly split into training and 
validation sets at a ratio of 7:3, respectively.

2. Image feature extraction backbone

1) Vanilla convolutional Neural Network
In this study, a CNN was used to predict the quantity of 

cereal on a tray. The input image used for the experiment was 
reduced to a resolution of 13×13×256 pixels and fed into the 
neural network. A vector containing 256 elements extracted from 
each image was input into a Rectified Linear Unit (ReLU) layer, 
and finally, the softmax layer predicted the quantity of cereal, 
which could be 0 g, 70 g, 140 g, 210 g, 280 g, 350 g, or 420 
g. The specific dimensions of each layer of the neural network 
and the applied hyperparameters are summarized in Table 1. 
This table provides a summary of the neural network's structure 
and hyperparameters, helping to understand and optimize the 
model's complexity and data processing flow. It also ensures the 
reproducibility of the research. The primary advantage of CNNs 
is their ability to extract local features, thereby reducing the size 

Fig. 1. Derivation of optimal convolutional neural network backbone for rice quantity detection.
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of the input data and consequently decreasing the computational 
load. In this study, the pooling layers reduced the spatial size 
of the input array through a process known as downsampling. 
Max pooling selects the maximum value from a subset of the 
input array, whereas average pooling computes the average 
value. Based on the study by Dominik Scherer et al. (Scherer 
et al. 2010), which demonstrated that max pooling performs 

better than average pooling on image datasets, max pooling was 
employed in this study. Additionally, instead of sigmoid-shaped 
activation functions like y=tanh(x), which amplify nonlinearity 
and increase computational time, the ReLU activation function 
was adopted for its efficiency in reducing computational burden 
(Krizhevsky et al. 2017). Given that this study involves 
multi-class classification, the softmax function was utilized.

0 g 70 g 140 g 210 g

280 g 350 g 420 g

Fig. 2. Examples of images for rice quantity detection.

Layer type Output shape4) Number of parameters
(Total number of weights)

Conv2D_11) 223,223,32 416
MaxPooling2D_1 111,111,32 0

Conv2D_2 110,110,64 8,256
MaxPooling2D_2 55,55,64 0

Conv2D_3 54,54,128 32,896
MaxPooling2D_3 27,27,128 0

Conv2D_4 26,26,256 131,328
MaxPooling2D_4 13,13,256 0

Flatten 43,624 0
Dense (ReLU) 256 11,075,840

Dense (softmax) 7 1,799
· Activation function: ReLU / Softmax 
· Rate of learning: 1×10－5

· Loss function: Categorical cross entropy 
· Optimizer: RMSprop2) / Adam3) 
1) Conv2D: convolutional 2D.
2) RMSprop: root mean square propagation.
3) Adam: adaptive moment estimation.
4) Output shape: The dimensions of the image data after it passes through each layer of the network.

Table 1. Structure and hyperparameters of a vanilla convolutional neural Network used for rice quantity detection
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The detailed structure of the neural network and the specifics 
of each layer are as follows:

1. Input Layer: Receives image data with a resolution of 
13×13×256 pixels.

2. convolutional Layer: Uses multiple filters to extract features 
from the image.

3. Pooling Layer: Reduces the size of the feature map using 
max pooling.

4. Activation Layer: Applies the ReLU activation function to 
introduce nonlinearity.

5. Output Layer: Utilizes the softmax function to predict the 
final quantity of cereal.

This study designed and trained a neural network using CNN 
to predict the quantity of cereal on a tray by applying 
appropriate techniques and hyperparameters at each layer.

2) Pre-trained convolutional Neural Networks
Pre-trained CNNs are networks that have been previously 

trained on large datasets, allowing them to act as generalized 
models that efficiently perform tasks even on images that are 
completely different from the ones they were originally trained 
on. Feature extraction involves using a network system that has 
been pre-trained on a large dataset to extract features from a new 
image dataset. Based on these extracted features, a custom 
classifier for the new image dataset is trained. Feature extraction 
can be further divided into fast feature extraction and feature 
extraction (Lin et al. 2011).

Fast feature extraction involves running a pre-trained CNN on 
a new image dataset and saving the output as a NumPy array 
on disk for use as input to a separate fully connected classifier. 
This method is efficient and cost-effective because it requires 
executing the computationally intensive convolution operations 
only once. However, it does not allow for the application of data 
generation to minimize overfitting.

Feature extraction involves extending a pre-trained CNN by 
stacking dense layers on top and then running the entire model 
end-to-end on new image data. This approach allows for the use 
of image generation, as all input images exposed to the model 
pass through the convolution base layers every time.

As of January 12, 2022, the Keras website lists 39 pre-trained 
deep learning models available for use alongside pre-trained 
weights. Among these, the pre-trained deep learning models 
widely used in the field of computer vision include ResNet50, 
EfficientNet, and InceptionV3. The ResNet50 model, developed 

by Microsoft, addresses the vanishing gradient problem and is 
composed of up to 100 layers. EfficientNet, a state-of-the-art 
(SOTA) model developed by Google, and InceptionV3, also 
developed by Google, are evaluated as efficient in terms of the 
number of parameters they generate and the computational cost 
incurred.

In this study, we utilize pre-trained CNN models to extract 
features from a new image dataset and train a custom classifier 
based on these features. We compare the differences between 
fast feature extraction and feature extraction methods and 
analyze the advantages and disadvantages of each approach.

3) Simulation methodology
In Convolutional Neural Networks (CNNs), optimizers are 

algorithms that modify network attributes such as weights and 
learning rates to reduce loss. In this study, the RMSprop and 
Adam optimizers were applied. The RMSprop optimizer is an 
extension of the gradient descent algorithm and uses the 
decaying average of partial gradients to adjust the step size for 
each parameter. Using decaying moving averages overcomes the 
limitations of adaptive gradient algorithms, where the algorithm 
forgets the initial gradient and focuses only on the most recent 
gradient during the search process (Kurbiel & Khaleghian 2017).

The Adam optimizer is an extension of stochastic gradient 
descent widely adopted in recent deep learning applications in 
the fields of computer vision and natural language processing. 
It combines the advantages of the adaptive gradient algorithm, 
which maintains the learning rate for each parameter to improve 
performance on sparse gradients, and the RMSprop algorithm, 
which adjusts the learning rate for each parameter based on the 
average of recent gradient sizes (Kingma & Ba 2014).

Overfitting occurs when there is insufficient training data, 
making it challenging to train a model that can generalize well 
to new data. Image generation is a technique used to increase 
the diversity of the dataset by generating similar image samples, 
thereby reducing overfitting. In this study, image generation was 
applied by varying the image rotation by ±20°, image height by 
±10%, image width by ±10%, and image size by ±10%.

Dropout is one of the most effective and widely used 
regularization techniques for neural networks. Applying dropout 
to a network layer randomly excludes some of the layer's output 
features during training. The dropout rate is typically set between 
0 and 0.5 (0 to 50%) (Srivastava et al. 2014). In this study, a 
dropout rate of 50% was applied to evaluate the impact of 
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dropout.
To derive the maximum performance of the vanilla CNN, we 

evaluated the changes in performance based on the optimizer, 
image generation, and dropout (50%). Similarly, to ascertain the 
maximum performance of 12 pre-trained CNNs, we assessed the 
variations in performance due to the optimizer, dropout (50%), 
image generation, feature extraction methods, and fine-tuning. 
The considered cases are presented in Table 2.

Results

1. Vanilla CNN
The changes in training and validation accuracy for the vanilla 

CNN, according to the type of optimizer, image generation, and 
dropout, are depicted in Fig. 3. Examining the training and 
validation accuracy graphs in Fig. 3 reveals that cases V1, V2, 
V5, and V6, where image generation was applied, show a 
phenomenon of underfitting, with validation accuracy higher 
than training accuracy. This indicates that the vanilla CNN did 
not fully learn the characteristics of the training image data. On 
the other hand, cases V3, V4, V7, and V8, where either dropout 

was applied or neither image augmentation nor dropout was 
applied, display overfitting, with training accuracy exceeding 
validation accuracy. The top-1 validation accuracy from Fig. 3 
have been compiled in Table 3. Validation accuracy is measured 
as the ratio of predictions that match the true values across the 
entire validation dataset when the trained architecture predicts 
weight based on image features. The closer the predicted rice 
weight is to the true value, the higher the accuracy. Validation 
accuracies are automatically computed and presented during the 
training process. 

Generalization refers to how well a trained neural network 
performs on new data. The top-1 validation accuracy of V1, V2, 
V5, and V6 in Table 3 are results derived from underfitting, 
indicating insufficient generalization, which suggests a high level 
of uncertainty when applying to an actual dispensing system. 
Conversely, the top-1 validation accuracy of V3, V4, V7, and 
V8 in Table 3, which have relatively higher generalization from 
overfitting, were analyzed to be low at 55~60%. There is a 
significant difference between training accuracy and validation 
accuracy, indicating a gap in performance.

Case
Optimizer Dropout Image generation Extraction type Tunning

Vanilla CNN Pre-trained CNN
V1 P1

RMSprop1)

Yes
Yes Feature extraction

No
- P2 Yes

V2 P3
No Fast feature extraction

No
- P4 Yes

V3 P5

No
Yes Feature extraction

No
- P6 Yes

V4 P7
No Fast feature extraction

No
- P8 Yes

V5 P9

Adam2)

Yes
Yes Feature extraction

No
- P10 Yes

V6 P11
No Fast feature extraction

No
- P12 Yes

V7 P13

No
Yes Feature extraction

No
- P14 Yes

V8 P15
No Fast feature extraction

No
- P16 Yes

1) RMSprop: root mean square propagation.
2) Adam: adaptive moment estimation.

Table 2. Simulation cases of pre-trained and vanilla convolutional neural networks for rice quantity detection
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(A) Case V1 (B) Case V2

(C) Case V3 (D) Case V4

(E) Case V5 (F) Case V6

(G) Case V7 (H) Case V8

Fig. 3. Training and validation accuracy curves of vanilla convolutional neural network for rice quantity detection.
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2. Pre-trained CNNs
As previously discussed, simulations were conducted for 16 

scenarios involving twelve pre-trained CNN, including VGG19, 
considering variables such as image generation, fine-tuning, the 
application of dropout, optimizer types, and methods of feature 
extraction. CNN iterate through convolutional and pooling 
layers, generating feature maps at each stage. The activation 
results within the VGG19 pre-trained CNN based on the image 

input in Fig. 2 are summarized in Fig. 4. After passing through 
the first layer of the VGG19 pre-trained CNN, the feature map 
illustrated in Fig. 4A is derived from the results of 64 filters, 
maintaining all information of the initial input image. However, 
as we ascend to the higher layers of the VGG19 pre-trained 
CNN, the activations become increasingly abstract and visually 
challenging to comprehend. This transition results in a gradual 
reduction of information about the visual content of the image, 

Remark
Case ID

V1 V2 V3 V4 V5 V6 V7 V8
Top-1 validation accuracy (%) 82%* 82%* 55% 55% 88%* 72%* 60% 58%

1) Accuracy=Number of correct predictions/total number of predictions.
*Underfitting.

Table 3. Maximum validation accuracy1) of vanilla convolutional neural network for rice quantity detection

(A) After passing the block1_conv2 layer (B) After passing the block1_pool layer

(C) After passing the block3_conv4 layer (D) After passing the block3_pool layer

Fig. 4. Interlayer feature map of VGG1)19 pre-trained convolutional neural network for rice quantity detection. 1) VGG: 
visual geometry group.



Vol. 37, No. 4(2024) Optimal CNN for Personalized Rice Consumption Monitoring 205

while information pertaining to the image's class progressively 
increases, as demonstrated in Fig. 4B, 4C, and 4D.

The results of simulations with 12 pre-trained CNN indicated 
that models such as VGG16 are suitable for image feature 
extraction in this study, with key outcomes displayed in Fig. 5. 
The top-1 validation accuracy of all pre-trained CNN are 
summarized in Table 4. 

In Fig. 5, training and validation accuracy increases with 
learning iterations, and overfitting, which is important for 
generalization, is investigated. In Table 4, it was analyzed that 
ResNet50, ResNet152, EfficientB7, and MobileNetV3_small 
pre-trained CNN were not suitable for detecting the amount of 
grain ration on a white serving tray, which is the subject of this 
study.

InceptionV3, MobileNetV2_256, and MobileNetV2_1024 
pre-trained CNN were found to faithfully extract grain image 
characteristics in all cases in Table 4. VGG16, VGG19, 
DesNet121, DesNet201, MobileNetV2_Large pre-trained CNN 
were evaluated to faithfully extract grain image characteristics 

only under certain conditions. , taking into account overfitting 
for generalization and minimizing the difference between 
training and verification accuracy.

Table 5 shows that when applying the P5 and P13 conditions 
in Table 2 to the DesNet121 pre-trained CNN, top-1 verification 
accuracy of 90% is secured. P5 and P13 are cases where dropout 
and fine tuning are not applied, but image generation and general 
feature extraction are applied. The optimizer RMSprop and 
Adam types were analyzed to have no effect.

Pre-trained CNN exhibit excellent capabilities for image 
feature extraction but are associated with high computational 
demands. This presents a challenge when deploying these 
networks on mobile devices, where power consumption becomes 
a critical concern. In response to the design requirements of 
mobile and embedded vision applications, Andrew G. Howard 
and colleagues developed the MobileNetV2, MobileNetV3Large, 
and MobileNetV3Small pre-trained CNN, tailored to efficiently 
address these constraints (Howard et al. 2017; Sandler et al. 
2018; Howard et al. 2019).

(A) VGG1)19, Case P5 (B) DesNet2)121, Case P5 

(C) DesNet201, Case P1 (D) MobileNet3)V2_1024, Case P5

Fig. 5. Suitable pre-trained convolutional neural network for image feature extraction for rice quantity detection. 1) VGGnet: 
visual geometry group network. 2) DesNet: densely connected convolutional network. 3) MobileNet: mobile network.
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Case ResNet2)50 ResNet152 EfficientNetB7 InceptionV3 VGG3)16 VGG19

P1 - - - 60% - -

P2 - - - 50% - -

P3 - - - 50% - -

P4 - - - 50% - -

P5 - - - 65% 72% 75%

P6 - - - 40% - -

P7 - - - 45% 55% 48%

P8 - - - 45% 50% 48%

P9 - - - 70%* - -

P10 - - - 75%* - -

P11 - - - 56% 58% 48%*

P12 - - - 55% 58% 55%

P13 - - - 65% - -

P14 - - - 45% - -

P15 - - - 45% 48% 51%

P16 - - - 40% 51% 41%

Case DesNet4)121 DesNet201 MobileNet5)V2 256 MobileNetV2 1024 MobileNetV3 Large MobileNetV3 Small

P1 75%* 80%* 60% 65% - -

P2 - - 29% 25% 38% -

P3 55% 60% 55% 58% - -

P4 55% 60% 55% 58% - -

P5 80% 73% 70% 75% - -

P6 40% - 40% 21% 23% -

P7 51% 60% 50% 48% - -

P8 58% 55% 50% 52% - -

P9 82%* 78%* 68%* 76% - -

P10 58%* - 31% 28% 22% -

P11 65% 60% 52% 58% - -

P12 65% 60% 52% 58% - -

P13 80% 90% 72% 73% - -

P14 32% 50% 30% 38% 22% -

P15 55% 55% 50% 55% - -

P16 66% 50% 45% 48% - -
1) Accuracy=Number of correct predictions/total number of predictions.
2) ResNet: residual network.
3) VGGNet: visual geometry group network.
4) DesNet: densely connected convolutional network.
5) MobileNet: mobile network.
-: unresponsive, *: underfitting.

Table 4. Top-1 validation accuracy1) of pre-trained convolutional neural network for rice quantity detection
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Our evaluation revealed that, among the MobileNet 
architectures, the MobileNetV3Large and MobileNetV3Small 
networks were not suitable for detecting rice serving amounts, 
as indicated in our results. Conversely, the MobileNetV2 
network demonstrated a promising application in this context, 
achieving a top-1 validation accuracy of 76% for rice serving 
amount detection on mobile platforms, as assessed in our study.

Discussion

This study investigates the application of CNN not only for 
image classification but also as backbones for object detection 
and segmentation, focusing on extracting features from images 
of rice serving amount changes on white serving trays. We 
specifically used white trays because training a model to detect 
white rice on a white tray is considered more challenging than 
detecting white rice on trays of other colors or materials, such 
as aluminum. From this, we inferred that the model could 
achieve similar or even higher accuracy when detecting white 
rice on trays of different colors or materials.

The study further examines the training and validation 
accuracy of both vanilla and pre-trained CNNs, considering 
factors such as the type of optimizer, the application of image 
augmentation and dropout, and different methods of feature 
extraction. By analyzing these factors, we aim to identify the 
optimal conditions for accurately detecting and segmenting rice 
servings, which could then be generalized to various tray types 
and conditions.

In the application of vanilla CNN, the implementation of 
image generation has been observed to increase validation 
accuracy. However, an instance of underfitting is identified 
where the validation accuracy exceeds the training accuracy 
significantly at the number of iterations required to achieve top-1 
validation accuracy, rendering it unsuitable for generalization 
necessary for real-world applications. Conversely, when only 
dropout is applied or neither image augmentation nor dropout is 
implemented, a typical case of overfitting occurs. Not only is 
there a significant difference between training and validation 
accuracy, but the top-1 validation accuracy is also found to be 
limited to a range of 55-60%, indicating suboptimal performance.

In the application of twelve pre-trained CNN, it was analyzed 
that ResNet50, ResNet152, EfficientB7, and MobileNetV3_small 
pre-trained CNNs are not suitable for detecting rice serving 
amounts. Conversely, the InceptionV3, MobileNetV2_256, and 
MobileNetV2_1024 pre-trained CNNs have been evaluated as 
effectively extracting the characteristics of rice serving amount 
images. The VGG16, VGG19, DesNet121, DesNet201, and 
MobileNetV2_Large pre-trained CNN were found to faithfully 
extract the characteristics of rice serving amount images only 
under specific conditions.

The derived top-1 validation accuracy of pre-trained CNN 
reached 90% in the case of the DesNet121 network when the 
RMSprop or Adam optimizer was applied, without the 
application of dropout and fine-tuning, and with the inclusion of 
image generation and general feature extraction techniques. For 
detecting rice serving amounts on mobile devices, the 

Network Maximum validation accuracy Case
InceptionV3 65% P5

VGG2)16 72% P5
VGG19 75% P5

DesNet3)121 80% P5, P13
DesNet201 90% P13

MobileNet4) V2 256 72% P13
MobileNetV2 1024 76% P9
MobileNetV3 Large 38% P2

1) Accuracy=Number of correct predictions/total number of predictions.
2) VGGnet: visual geometry group network.
3) DesNet: densely connected convolutional network.
4) MobileNet: mobile network.

Table 5. Top-1 validation accuracy1) of pre-trained convolutional neural network for rice quantity detection
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MobileNetV2 network, among the MobileNets, was evaluated as 
highly suitable due to its ability to minimize the use of resources 
such as power on mobile devices.

The successful creation and deployment of a deep learning 
model for quantifying rice servings in institutional foodservice 
represent significant progress in the field of personalized 
nutrition management. The model's high validation accuracy 
suggests promising potential for effective diet management. In 
traditional Korean meals, the quantities of specific components 
such as rice, soups, main courses (primarily protein-based), side 
dishes (e.g., vegetables), and kimchi are often influenced by 
individuals' nutritional knowledge and health awareness. This 
variability underscores the need to analyze the nutritional content 
across various food groups.

It is thought that future research should expand to include 
main courses and side dishes to develop a comprehensive 
understanding of the entire meal's nutritional composition. Such 
technological advancements will enhance the ability to detect the 
nutritional content of the entire tray, thereby supporting efforts 
to tailor dietary intake to meet individual nutritional requirements 
and promoting personalized nutrition management.
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