DOI QR코드

DOI QR Code

Experimental and theoretical analysis of electronic musical structures with smart nanoparticles

  • Jing Han (Elementary Education College, Zaozhuang University) ;
  • Maryam Shokravi (Energy Institute of Higher Education, Mehrab High School) ;
  • F. Ming (College of Shipbuilding Engineering, Harbin Engineering University)
  • Received : 2024.04.01
  • Accepted : 2024.08.08
  • Published : 2024.08.25

Abstract

Nanotechnology has emerged as a promising avenue for enhancing musical structures. In this study, we analyze the static behavior of laser harp (i.e., electronic musical instrument) reinforced with Zinc Oxide (ZnO) nanoparticles. Leveraging the piezoelectric properties of ZnO nanoparticles, the structure is subjected to an electric field for intelligent control. The electronic musical structure is situated in a foundation with vertical springs and shear modulus constants. We employ the exponential Shear Deformation Beam Theory (ESDBT) to mathematically model the structure. A micro-electro-mechanical model is employed to determine the equivalent properties of the system. By utilizing nonlinear stress-strain relations, energy methods, and Hamilton's principle, we derive the motion equations. The buckling load of the electronic musical beam is calculated using the Difference Quadrature Method (DQM). The primary objective of this study is to present a mathematical model for electronic musical beams and determining the buckling load of the structure and to investigate the influence of nanotechnology and electric fields on its buckling behavior. The buckling is the case when the structure becomes deforms and unstable. Our findings reveal that the application of negative external voltage to the electronic musical structure increases both the stiffness and the buckling load of the musical system. Furthermore, reinforcing the electronic musical structure with ZnO nanoparticles results in an increased buckling load. Notably, the maximum enhancement in the 28-day compressive and tensile strengths of samples containing zinc oxide nanoparticles compared to the control sample resulting in increases of 18.70% and 3.77%, respectively.

Keywords

References

  1. Adibi, M. and Talebkhah, R. (2022), "Seismic performance assessment of the precast concrete buildings using FEMA P-695 methodology", Struct. Eng. Mech., 82(1), 55-67. http://doi.org/10.12989/sem.2022.82.1.053.
  2. Amezcua, H.R. and Ayala, A.G. (2023), "A computationally efficient numerical integration scheme for non-linear planestress/strain FEM applications using one-point constitutive model evaluation", Struct. Eng. Mech., 85(1), 89-104. http://doi.org/10.12989/sem.2023.82.1.089.
  3. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. http://doi.org/10.12989/eas.2018.15.3.285.
  4. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: Buckling analysis", Wind Struct., 24(5), 431-446. http://doi.org/10.12989/was.2017.24.5.431.
  5. Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concrete Constr., 7(1), 51-63. http://doi.org/10.12989/acc.2019.7.1.051.
  6. Bakhshandeh Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  7. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. http://doi.org/10.12989/scs.2016.21.4.883.
  8. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21, 883-919. http://doi.org/10.12989/scs.2016.21.4.883.
  9. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2023), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://doi.org/10.12989/anr.2023.7.5.351.
  10. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2018), "Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(6), 1053-106. https://doi.org/10.12989/cac.2016.18.6.1053.
  11. Chen, S.L. and Lee, S.C. (2020), "An investigation on tunnel deformation behavior of expressway tunnels", Geomech. Eng., 21(2), 215-226. http://doi.org/10.12989/gae.2020.21.2.215.
  12. Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube reinforced composites", J. Sound Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020.
  13. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  14. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  15. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  16. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019b), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci. 153 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  17. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  18. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  19. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019c), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene platelet-reinforced piezoelectric layers", J. Sandw. Struct. Mater., 1099636219839175. https://doi.org/10.1177/1099636219839175.
  20. Henkhaus, K., Pujol, S. and Ramirez, J. (2013), "Axial failure of reinforced concrete beams damaged by shear reversals", J. Struct. Eng., 73, 1172-1180. http://doi.org/10.1061/(ASCE)ST.1943-541X.0000673.
  21. Hong, S.K., Oh, D.W., Kong, S.K. and Lee, Y.J. (2020), "Investigation of divergence tunnel excavation according to horizontal offsets between tunnels", Geomech. Eng., 21(2), 111-122. http://doi.org/10.12989/gae.2020.21.2.111.
  22. Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete beams armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://doi.org/10.12989/cac.2016.17.5.567.
  23. Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60, 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6.
  24. Karaca, Z. and Turkeli, E. (2014), "The slenderness effect on wind response of industrial reinforced concrete chimneys", Wind Struct., 18(3), 281-294. https://doi.org/10.12989/was.2014.18.3.281.
  25. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-120. https://doi.org/10.12989/scs.2018.28.2.195.
  26. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solid., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  27. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  28. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concrete Constr., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  29. Kolahchi, R. and Moniribidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8.
  30. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  31. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78, 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  32. Kolahchi, R., Moniri Bidgoli, A.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. http://doi.org/10.12989/sem.2015.55.5.1001.
  33. Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2013), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 5, 2342-2355. https://doi.org/10.1007/s12206-015-0811-9.
  34. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  35. Li, R. and Peng, B. (2022), "Implementing monocular visual-tactile sensors for robust manipulation", Cyborg Bionic Syst., http://doi.org/10.34133/2022/9797562.
  36. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Meth. Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001.
  37. Lu, D., Zhou, X., Du, X. and Wang, G. (2020), "3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition", J. Eng. Mech., 146(11), 04020124. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001854.
  38. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concrete, 20(3), 361-368. http://doi.org/10.12989/cac.2017.20.3.361.
  39. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. http://doi.org/10.12989/cac.2017.19.6.745.
  40. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118.
  41. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2023), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429 http://doi.org/10.12989/anr.2023.7.6.419.
  42. Seo, Y.S., Jeong, W.B., Yoo, W.S. and Jeong, H.K. (2015), "Frequency response analysis of cylindrical shells conveying fluid using finite element method", J. Mech. Sci. Technol., 19, 625-633. https://doi.org/10.1007/BF02916184.
  43. Solhjoo, S. and Vakis, A.I. (2015(. "Single asperity nanocontacts: Comparison between molecular dynamics simulations and continuum mechanics models", Comput. Mater. Sci., 99, 209-220. https://doi.org/10.1016/j.commatsci.2014.12.010.
  44. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. http://doi.org/10.12989/scs.2020.37.1.099.
  45. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  46. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  47. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete beams reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. http://doi.org/10.12989/was.2017.24.1.043.
  48. Zhang, P., Du, Ch., Zhao, W. and Zhang, D. (2022), "Hydraulic fracture simulation of concrete using the SBFEM-FVM model", Struct. Eng. Mech., 80(5), 553-562. http://doi.org/10.12989/sem.2022.80.5.553.
  49. Zhang, S., Tan, D., Zhu, H., Pei, H. and Shi, B. (2024), "Rheological behaviors of Na-montmorillonite considering particle interactions: A molecular dynamics study", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2024.07.003.