DOI QR코드

DOI QR Code

Bioprospecting of Culturable Halophilic Bacteria Isolated from Mediterranean Solar Saltern for Extracellular Halotolerant Enzymes

  • Ahmed Mohamed Ali (Botany and Microbiology Department, Faculty of Science, Cairo University) ;
  • Tahany M.A. Abdel-Rahman (Botany and Microbiology Department, Faculty of Science, Cairo University) ;
  • Mohamed G. Farahat (Botany and Microbiology Department, Faculty of Science, Cairo University)
  • Received : 2024.01.19
  • Accepted : 2024.03.07
  • Published : 2024.03.28

Abstract

Halophilic bacteria are promising reservoirs for halotolerant enzymes that have gained much attention in biotechnological applications due to their remarkable activity and stability. In this study, 62 halophilic bacterial strains isolated from a solar saltern were screened for the production of various extracellular enzymes. The results revealed that 31 strains (50%) were positive for amylase production while 26 strains (41.9%) were positive for protease. Further, 22 strains (35.48%) exhibited β-glucosidase activity and only 17 (27.41%) demonstrated lipase activity. Of the investigated halophiles, ten strains growing in the presence of ≥15% NaCl (w/v) were selected and identified based on their 16S rRNA gene sequences as Halomonas meridiana, Salinivibrio costicola, Virgibacillus oceani, Virgibacillus marismortui, Marinobacter lipolyticus, Halobacillus karajensis, Salicola salis, Pseudoalteromonas shioyasakiensis, Salinicoccus amylolyticus, and Paracoccus salipaludis. Therefore, the present study highlights the diversity of the culturable halophilic bacteria in a Mediterranean solar saltern, harboring various valuable halotolerant enzymes.

Keywords

References

  1. Thakur N, Singh SP, Zhang C. 2022. Microorganisms under extreme environments and their applications. Curr. Res. Microb. Sci. 3: 100141.
  2. Henrique RP. 2013. Extremophiles and extreme environments. Life 3: 482-485.
  3. Didari M, Bagheri M, Amoozegar MA, Bouzari S, Babavalian H, Tebyanian H, et al. 2020. Diversity of halophilic and halotolerant bacteria in the largest seasonal hypersaline lake (Aran-BidgolIran). J. Environ. Health Sci. Eng. 18: 961-971.
  4. Nwankwo C, Hou J, Cui HL. 2023. Extracellular proteases from halophiles: diversity and application challenges. Appl. Microbiol. Biotechnol. 107: 5923-5934.
  5. Farahat MG, Amr D, Galal A. 2020. Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. Int. J. Biol. Macromol. 143: 685-695.
  6. Singh RS, Chauhan K, Kennedy JF. 2017. A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int. J. Biol. Macromol. 96: 312-322.
  7. Ariaeenejad S, Kavousi K, Han JL, Ding XZ, Hosseini Salekdeh G. 2023. Efficiency of an alkaline, thermostable, detergent compatible, and organic solvent tolerant lipase with hydrolytic potential in biotreatment of wastewater. Sci. Total Environ. 866: 161066.
  8. Thapa S, Li H, OHair J, Bhatti S, Chen FC, Nasr K Al, et al. 2019. Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Mol. Biotechnol. 61: 579-601.
  9. Ramasamy R, Subramanian RB. 2022. Enzyme hydrolysis of polyester knitted fabric: A method to control the microfiber shedding from synthetic textile. Environ. Sci. Pollut. Res. 29: 81265-81278.
  10. Sui B, Wang T, Fang J, Hou Z, Shu T, Lu Z, et al. 2023. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes. Front. Microbiol. 14: 1265139.
  11. Wang J, Liu Y, Ma Y, Wang X, Zhang B. 2023. Research progress regarding the role of halophilic and halotolerant microorganisms in the eco-environmental sustainability and conservation. J. Clean. Prod. 418: 138054.
  12. Jafari N, Rezaei S, Rezaie R, Dilmaghani H. 2017. Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste. Int. J. Biol. Macromol. 105: 489-498.
  13. Zhou M, Dong B, Shao Z. 2020. Complete genome sequence of Marinobacter sp. LQ44, a haloalkaliphilic phenol-degrading bacterium isolated from a deep-sea hydrothermal vent. Mar. Genom. 50: 100697.
  14. Fan S, Li K, Yan Y, Wang J, Wang J, Qiao C, et al. 2018. A novel chlorpyrifos hydrolase CPD from Paracoccus sp. TRP: Molecular cloning, characterization and catalytic mechanism. Electron. J. Biotechnol. 31: 10-16.
  15. Cheng TH, Ismail N, Kamaruding N, Saidin J, Danish-Daniel M. 2020. Industrial enzymes-producing marine bacteria from marine resources. Biotechnol. Rep. 27: e00482.
  16. Ren W, Wu H, Guo C, Xue B, Long H, Zhang X, et al. 2021. Multi-strain tropical Bacillus spp. as a potential probiotic biocontrol agent for large-scale enhancement of mariculture water quality. Front. Microbiol. 12: 699378.
  17. Wei Y, Bu J, Long H, Zhang X, Cai X, Huang A, et al. 2021. Community structure of protease-producing bacteria cultivated from aquaculture systems: Potential impact of a tropical environment. Front. Microbiol. 12: 638129.
  18. Menasria T, Monteoliva-Sanchez M, Benhadj M, Benammar L, Boukoucha M, Aguilera M. 2022. Unraveling the enzymatic and antibacterial potential of rare halophilic actinomycetes from Algerian hypersaline wetland ecosystems. J. Basic Microbiol. 62: 1202-1215.
  19. Yousefi-Mokri M, Sharafi A, Rezaei S, Sadeghian-Abadi S, Imanparast S, Mogharabi-Manzari M, et al. 2019. Enzymatic hydrolysis of inulin by an immobilized extremophilic inulinase from the halophile bacterium Alkalibacillus filiformis. Carbohydr. Res. 483: 107746.
  20. Farahat MG, Shehata HM, Kamel Z. 2020. Codon optimization and co-expression of thermostable β-galactosidase and L-arabinose isomerase in lactococcus lactis for single-step production of food-grade D-tagatose. Biochem. Cell. Arch. 20: 2545-2552.
  21. Aarti C, Khusro A, Agastian P, Darwish NM, Al DA. 2020. Molecular diversity and hydrolytic enzymes production abilities of soil bacteria. Saudi J. Biol. Sci. 27: 3235-3248.
  22. Khusro A, Aarti C. 2015. Molecular identification of newly isolated Bacillus strains from poultry farm and optimization of process parameters for enhanced production of extracellular amylase using OFAT method. Res. J. Microbiol. 10: 393.
  23. Farooq MA, Ali S, Hassan A, Tahir HM, Mumtaz S, Mumtaz S. 2021. Biosynthesis and industrial applications of α-amylase: a review. Arch. Microbiol. 203: 1281-1292.
  24. Rathod BG, Pandala S, Poosarla VG. 2023. A novel halo-acid-alkali-tolerant and surfactant stable amylase secreted from halophile Bacillus siamensis F2 and its application in waste valorization by bioethanol production and food industry. Appl. Biochem. Biotechnol. 195: 4775-4795.
  25. Kalpana BJ, Aarthy S, Pandian SK. 2012. Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Appl. Biochem. Biotechnol. 167: 1778-1794.
  26. Ousaadi MI, Merouane F, Berkani M, Almomani F, Vasseghian Y, Kitouni M. 2021. Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic Streptomyces sp. Environ. Res. 201: 111494.
  27. Gupta N, Paul JS, Jadhav SK. 2024. Biovalorizing agro-waste 'deoiled rice bran' for thermostable, alkalophilic and detergent stable α-amylase production with its application as laundry detergent additive and textile desizer. Int. J. Biol. Macromol. 256: 128470.
  28. Veerakumar S, Manian R. 2022. Agarase, amylase and xylanase from Halomonas meridiana: A study on optimization of coproduction for biomass saccharification. Fermentation 8: 479.
  29. Wu G, Qin Y, Cheng Q, Liu Z. 2014. Characterization of a novel alkali-stable and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda. J. Mol. Catal. B Enzym. 110: 8-15.
  30. Li Q, Yi L, Marek P, Iverson BL. 2013. Commercial proteases: present and future. FEBS Lett. 587: 1155-1163.
  31. Yang X, Wang Z, Zhang C, Wang L, Pang L, Zhang D, et al. 2021. Assessment of the production of Bacillus cereus protease and its effect on the quality of ultra-high temperature-sterilized whole milk. J. Dairy Sci. 104: 6577-6587.
  32. Mahakhan P, Apiso P, Srisunthorn K, Vichitphan K, Vichitphan S, Punyauppa-Path S, et al. 2023. Alkaline protease production from Bacillus gibsonii 6BS15-4 using dairy effluent and its characterization as a laundry detergent additive. J. Microbiol. Biotechnol. 33: 195-202.
  33. Rejisha RP, Murugan M. 2021. Alkaline protease production by halophilic Bacillus sp. strain SP II-4 and characterization with special reference to contact lens cleansing. Mater. Today Proc. 45: 1757-1760.
  34. Bose A, Chawdhary V, Keharia H. 2014. Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann. Microbiol. 64: 343-354.
  35. Delgado-garcia M, Flores-gallegos AC, Kirchmayr M, Rodriguez JA, Mateos-diaz JC, Aguilar CN, et al. 2019. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron. J. Biotechnol. 39: 52-60.
  36. Sana B, Ghosh D, Saha M, Mukherjee J. 2006. Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem. 41: 208-215.
  37. Gaonkar SK, Furtado IJ. 2020. Characterization of extracellular protease from the haloarcheon Halococcus sp. strain GUGFAWS-3 (MF425611). Curr. Microbiol. 77: 1024-1034.
  38. Maharaja P, Boopathy R, Anushree VV, Mahesh M, Swarnalatha S, Ravindran B. 2020. Bio removal of proteins, lipids and mucopolysaccharides in tannery hyper saline wastewater using halophilic bacteria. J. Water Process Eng. 38: 101674.
  39. Chandra P, Enespa, Singh R, Arora PK. 2020. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 19: 1-42.
  40. Qiu J, Han R, Wang C. 2021. Microbial halophilic lipases: A review. J. Basic Microbiol. 61: 594-602.
  41. Li PY, Zhang YQ, Zhang Y, Jiang WX, Wang YJ, Zhang YS, et al. 2020. Study on a novel cold-active and halotolerant monoacylglycerol lipase widespread in marine bacteria reveals a new group of bacterial monoacylglycerol lipases containing unusual C(A/S)HSMG catalytic motifs. Front. Microbiol. 11: 498595.
  42. Martinez-Perez RB, Rodriguez JA, Cira-Chavez LA, Dendooven L, Viniegra-Gonzalez G, Estrada-Alvarado I. 2020. Exoenzyme-producing halophilic bacteria from the former Lake Texcoco: identification and production of n-butyl oleate and bioactive peptides. Folia Microbiol. (Praha) 65: 835-847.
  43. Yuan D, Lan D, Xin R, Yang B, Wang Y. 2014. Biochemical properties of a new cold-active mono- and diacylglycerol lipase from marine member Janibacter sp. strain HTCC2649. Int. J. Mol. Sci. 15: 10554-10566.
  44. Kanlayakrit W, Boonpan A. 2007. Screening of halophilic lipase-producing bacteria and characterization of enzyme for fish sauce quality improvement. Agric. Nat. Resour. 41: 576-585.
  45. Perez D, Martin S, Fernandez-Lorente G, Filice M, Guisan JM, Ventosa A, et al. 2011. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6: e23325.
  46. Kiran GS, Lipton AN, Kennedy J, Dobson ADW, Selvin J. 2014. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered 5: 305.
  47. Delgado-Garcia M, Valdivia-Urdiales B, Aguilar-Gonzalez CN, Contreras-Esquivel JC, Rodriguez-Herrera R. 2012. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 92: 2575-2580.
  48. Khmaissa M, Hadrich B, Chamkha M, Sayari A, Fendri A. 2022. Production of a halotolerant lipase from Halomonas sp. strain C2SS100: Optimization by response-surface methodology and application in detergent formulations. J. Surfactants Deterg. 25: 361-376.
  49. Rajaei-Maleki S, Seyedalipour B, Ahmady-Asbchin S, Riazi G. 2021. Production of lipase by isolated halophile, Halobacillus sp. strain AR11 from International Miankaleh wetland. J. Gene. Resour. 7: 188-195.
  50. Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Ahmad MA. 2018. Biosecretion of higher halophilic lipase by a novel Bacillus amyloliquefaciens AIKK2 using agro-waste as supporting substrate. Process Biochem. 72: 55-62.
  51. Saranik MM, Badawy MA, Farahat MG. 2023. Fabrication of β-glucosidase-copper phosphate hybrid nanoflowers for bioconversion of geniposide into gardenia blue. Int. J. Nanosci. 22: 2350040.
  52. Goyal K, Selvakumar P, Hayashi K. 2001. Characterization of a thermostable β-glucosidase (BglB) from Thermotoga maritima showing transglycosylation activity. J. Mol. Catal. B Enzym. 15: 45-53.
  53. Khan S, Pozzo T, Megyeri M, Lindahl S, Sundin A, Turner C, et al. 2011. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC Biochem. 12: 11.
  54. Turner P, Svensson D, Adlercreutz P, Karlsson EN. 2007. A novel variant of Thermotoga neapolitana β-glucosidase B is an efficient catalyst for the synthesis of alkyl glucosides by transglycosylation. J. Biotechnol. 130: 67-74.
  55. Qu X, Ding B, Li J, Liang M, Du L, Wei Y, et al. 2020. Characterization of a GH3 halophilic β -glucosidase from Pseudoalteromonas and its NaCl-induced activity toward isoflavones. Int. J. Biol. Macromol. 164: 1392-1398.
  56. Bhatia Y, Mishra S, Bisaria VS, Bhatia Y, Mishra S, Bisaria VS. 2008. Microbial β-glucosidases : Cloning, properties, and applications. Crit. Rev. Biotechnol. 22: 375-407.
  57. de Veras BO, dos Santos YQ, Diniz KM, Carelli GSC, dos Santos EA. 2018. Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60. F1000Res 7: 1704.
  58. Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL. 2020. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci. Afr. 8: e00279.
  59. Abd El-Ghany MN, Hamdi SA, Korany SM, Elbaz RM, Farahat MG. 2023. Biosynthesis of novel tellurium nanorods by Gayadomonas sp. TNPM15 isolated from mangrove sediments and assessment of their impact on spore germination and ultrastructure of phytopathogenic Fungi. Microorganisms 11: 558.
  60. Marhuenda-Egea FC, Bonete MJ. 2002. Extreme halophilic enzymes in organic solvents. Curr. Opin Biotechnol. 13: 385-389.
  61. Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S. 2011. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct. Biol. 11: 1-12.
  62. Baati H, Bahloul M, Amdouni R, Azri C. 2022. Behavior assessment of moderately halophilic Bacteria in brines highly enriched with heavy metals: Sfax solar saltern (Tunisia), A Case Study. Geomicrobiol. J. 39: 341-351.
  63. Rathakrishnan D, Gopalan AK. 2022. Isolation and characterization of halophilic isolates from Indian salterns and their screening for production of hydrolytic enzymes. Environmental Challenges 6: 100426.
  64. Boujida N, Char S, El N, Manresa A, Minana-galbis D, Skali N, et al. 2018. Biocatalysis and Agricultural Biotechnology Isolation and characterization of halophilic bacteria producing exopolymers with emulsifying and antioxidant activities. Biocatal. Agric. Biotechnol. 16: 631-637.
  65. Nour A, Saibi E, Nas F, Arab M, Aissaoui N, Boukeroui Y, et al. 2022. Antimicrobial and enzymatic profiling of halophilic and halotolerant bacteria from a hypersaline lake 'The Great Sebkha of Oran, Northwestern Algeria'. Geomicrobiol. J. 39: 816-831.
  66. Villanova V, Galasso C, Fiorini F, Lima S, Br M, Sansone C, et al. 2021. Biological and chemical characterization of new isolated halophilic microorganisms from saltern ponds of Trapani, Sicily. Algal Res. 54: 102192.
  67. Karray F, Ben M, Najwa A, Manel K, Manel H, Sami F. 2018. Extracellular hydrolytic enzymes produced by halophilic bacteria and archaea isolated from hypersaline lake. Mol. Biol. Rep. 45: 1297-1309.
  68. Wang X, Zhao Y, Tan H, Chi N, Zhang Q, Du Y, et al. 2014. Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium. Int. J. Biol. Macromol. 70: 455-462.
  69. Boyadzhieva I, Tomova I, Radchenkova N, Kambourova M, Poli A, Vasileva-tonkova E. 2018. Diversity of heterotrophic halophilic bacteria isolated from coastal solar salterns, Bulgaria and their ability to synthesize bioactive molecules with biotechnological impact. Microbiology 87: 519-528.
  70. Baati H, Amdouni R, Gharsallah N. 2010. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr. Microbiol. 60: 157-161.
  71. Sabet S, Diallo L, Hays L, Jung W, Dillon JG. 2009. Characterization of halophiles isolated from solar salterns in Baja California, Mexico. Extremophiles 13: 643-656.
  72. Manikandan M, Kannan V, Pasic L. 2009. Diversity of microorganisms in solar salterns of Tamil Nadu, India. World J. Microbiol. Biotechnol. 25: 1007-1017.
  73. Lopez-hermoso C, Haba RR De, Sanchez-porro C, Ventosa A. 2018. Salinivibrio kushneri sp. nov., a moderately halophilic bacterium isolated from salterns. Syst. Appl. Microbiol. 41: 159-166.
  74. Toker SK, Evlat H, Kocyigit A. 2021. Screening of newly isolated marine-derived fungi for their laccase production and decolorization of different dye types. Reg. Stud. Mar. Sci. 45: 101837.
  75. Zhu D, Qaria MA, Zhu B, Sun J, Yang B. 2022. Extremophiles and extremozymes in lignin bioprocessing. Renew. Sustain. Energy Rev. 157: 112069.
  76. Amoozegar MA, Malekzadeh F, Malik KA. 2003. Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J. Microbiol. Methods 52: 353-359.
  77. Wang X, Kan G, Shi C, Xie Q, Ju Y, Wang R, et al. 2019. Purification and characterization of a novel wild-type α-amylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175. Protein Expr. Purif. 164: 105444.
  78. Kalpana BJ, Pandian SK. 2014. Halotolerant, acid-alkali stable, chelator resistant and raw starch digesting α-amylase from a marine bacterium Bacillus subtilis S8-18. J. Basic Microbiol. 54: 802-811.
  79. Chakrabortya S, Khopadea A, Kokarea C, Mahadika K, Mahadik K. 2009. Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J. Mol. Catal. B Enzym. 58: 17-23.
  80. Najafi MF, Kembhavi A. 2005. One step purification and characterization of an extracellular α-amylase from marine Vibrio sp. Enzyme Microb. Technol. 36: 535-539.
  81. Jianguo L, Zhiqiang Z, Hongyue D, Jianren L, Zhanfeng C. 2011. Isolation and characterization of a cold-active amylase from marine Wangia sp. C52. Afr. J. Microbiol. Res. 5: 1156-1162.
  82. Mageswari A, Subramanian P, Chandrasekaran S. 2012. Optimization and immobilization of amylase obtained from halotolerant bacteria isolated from solar salterns. J. Genet. Eng. Biotechnol. 10: 201-208.
  83. Chakraborty S, Jana S, Gandhi A, Sen KK, Zhiang W, Kokare C. 2014. Gellan gum microspheres containing a novel α-amylase from marine Nocardiopsis sp. strain B2 for immobilization. Int. J. Biol. Macromol. 70: 292-299.
  84. Kikani BA, Singh SP. 2012. The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Process Biochem. 47: 1791-1798.
  85. Sanchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A. 2003. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7: 221-228.
  86. Ghoreishi FS, Roghanian R, Emtiazi G. 2020. Inhibition of quorum sensing-controlled virulence factors with natural substances and novel protease, obtained from Halobacillus karajensis. Microb. Pathog. 149: 104555.
  87. Chamroensaksri N, Akaracharanya A, Visessanguan W, Tanasupawat S. 2007. Characterization of halophilic bacterium NB2-1 from PLA-RA and its protease production. J. Food Biochem. 32: 536-555.
  88. Sinha R, Khare SK. 2012. Isolation of a halophilic Virgibacillus sp. EMB13: characterization of its protease for detergent application. Indian J. Biotechnol. 11: 416-426.
  89. Daoud L, Jlidi M, Hmani H, Hadj Brahim A, El Arbi M, Ben Ali M. 2017. Characterization of thermo-solvent stable protease from Halobacillus sp. CJ4 isolated from Chott Eldjerid hypersaline lake in Tunisia. J. Basic Microbiol. 57: 104-113.
  90. Sinsuwan S, Rodtong S, Yongsawatdigul J. 2010. A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce. Food Chem. 119: 573-579.
  91. Xin L, Hui-Ying Y, Xiao-Xue L, Xiao S. 2011. Production and characterization of a novel extracellular metalloproteinase by a newly isolated moderate halophile, Halobacillus sp. LY6. Folia Microbiol (Praha) 56: 329-334.
  92. de Lourdes Moreno M, Garcia MT, Ventosa A, Mellado E. 2009. Characterization of Salicola sp. IC10, a lipase-and protease-producing extreme halophile. FEMS Microbiol. Ecol. 68: 59-71.
  93. Yang J, Li J, Mai Z, Tian X, Zhang S. 2013. Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. J. Biosci. Bioeng. 115: 628-632.
  94. Delgado-garcia M, Flores-gallegos AC, Kirchmayr M, Rodriguez JA, Mateos-diaz JC, Aguilar CN, et al. 2019. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron. J. Biotechnol. 39: 52-60.
  95. Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S. 2012. Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: a potential additive for laundry detergents. Bioresour. Technol. 115: 228-236.
  96. Annamalai N, Rajeswari MV, Sahu SK, Balasubramanian T. 2014. Purification and characterization of solvent stable, alkaline protease from Bacillus firmus CAS 7 by microbial conversion of marine wastes and molecular mechanism underlying solvent stability. Process Biochem. 49: 1012-1019.
  97. Cui H, Wang L, Yu Y, others. 2015. Production and characterization of alkaline protease from a high yielding and moderately halophilic strain of SD11 marine bacteria. J. Chem. 2015. ID 798304.
  98. Sanchez-Porro, Mellado E, Ventosa A, Martin S. 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 94: 295-300.
  99. Hemamalini R, Khare SK. 2018. Halophilic lipase does forms catalytically active aggregates: Evidence from Marinobacter sp. EMB5 lipase (LipEMB5). Int. J. Biol. Macromol. 119: 172-179.
  100. Lopes EM, Fernandes CC, Lemos EGDM, Kishi LT. 2020. Reconstruction and in silico analysis of new Marinobacter adhaerens t76_800 with potential for long-chain hydrocarbon bioremediation associated with marine environmental lipases. Mar. Genomics 49: 100685.
  101. Li X, Yu H-Y. 2014. Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol (Praha) 59: 455-463.
  102. Charoenpanich J, Suktanarag S, Toobbucha N. 2011. Production of a thermostable lipase by Aeromonas sp. EBB-1 isolated from marine sludge in Angsila, Thailand. Sci. Asia 37: 105-114.
  103. Mohan TS, Palavesam A, Ajitha RL. 2012. Optimization of lipase production by vibrio Sp.-A fish gut isolate. Eur. J. Zool. Res. 1: 23-25.
  104. Su JH, Chang MC, Lee YS, Tseng IC, Chuang YC. 2004. Cloning and characterization of the lipase and lipase activator protein from Vibrio vulnificus CKM-1. Biochim. Biophys. Acta 1678: 7-13.
  105. Sathishkumar R, Ananthan G, Iyappan K, Stalin C. 2015. A statistical approach for optimization of alkaline lipase production by ascidian associated-Halobacillus trueperi RSK CAS9. Biotechnol. Rep. 8: 64-71.
  106. Dueramae S, Bovornreungroj P, Enomoto T, Kantachote D. 2017. Purification and characterization of an extracellular lipolytic enzyme from the fermented fish-originated halotolerant bacterium, Virgibacillus alimentarius LBU20907. Chem. Papers 71: 1975-1984.
  107. Cai L, Xu S, Lu T, Lin D, Yao S. 2019. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J. Biotechnol. 292: 12-22.
  108. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN. 2017. Microbial cellulases - Diversity & biotechnology with reference to mangrove environment: A review. J. Genet. Eng. Biotechnol. 15: 197-210.
  109. Santos DA, Oliveira MM, Aprigio A, Curvelo S, Fonseca LP. 2017. Hydrolysis of cellulose from sugarcane bagasse by cellulases from marine-derived fungi strains. Int. Biodeterior. Biodegradation 121: 66-78.
  110. Sukharnikov LO, Cantwell BJ, Podar M, Zhulin IB. 2011. Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol. 29: 473-479.