DOI QR코드

DOI QR Code

Evaluation of the Probiotic Potential of Microorganisms Isolated from the Intestinal Tract of Cultured Epinephelus akaara

양식 붉바리 장관에서 분리된 미생물의 프로바이오틱 잠재력 평가

  • Young-Gun Moon (Department of aquatic Biomedical Sciences, Jeju National University) ;
  • Moon-Soo Boo (Fishing Coporation CR Co., Ltd.) ;
  • Chi-Hoon Lee (Fishing Coporation CR Co., Ltd.) ;
  • Jin-Kuk Park (Department of aquatic Biomedical Sciences, Jeju National University) ;
  • Moon-Soo Heo (Department of aquatic Biomedical Sciences, Jeju National University)
  • 문영건 (제주대학교 해양과학대학 수산생명의학과) ;
  • 부문수 (어업회사법인 씨알(주)) ;
  • 이치훈 (어업회사법인 씨알(주)) ;
  • 박진국 (제주대학교 해양과학대학 수산생명의학과) ;
  • 허문수 (제주대학교 해양과학대학 수산생명의학과)
  • Received : 2023.09.05
  • Accepted : 2023.10.12
  • Published : 2024.03.28

Abstract

This study focused on isolating and identifying strains from the gut of Epinephelus akaara cultivated in aquaculture facilities on Jeju Island. The aim was to evaluate the potential of utilizing these strains as probiotics for industrial applications. A total of 129 strains were isolated from the gut of E. akaara and screened based on their ability to create a clear zone of 10 mm or more in a preliminary antimicrobial activity test. Twelve strains were selected for further analysis, including bile resistance, acid tolerance at different pH levels, antioxidant activity, antibiotic susceptibility, and biochemical characteristics using the API kit. Through these characteristic experiments, eight strains (G1, G3, G15, G21, B1, B2, B3, B5) were identified as having potential as probiotics. Among these, the B group strains (B1, B2, B3, B5) exhibited significantly higher activity compared to the G group strains (G1, G3, G15, G21). Based on the phylogenetic analysis of the 16S rRNA gene sequences of the selected microorganisms, the strains were named as follows: B1 strain as Lactobacillus paracasei B1, B2 strain as Lactococcus lactis B2, B3 strain as Lactobacillus plantarum B3, B5 strain as Lactococcus lactis subsp. hordniae B5, G1 strain as Bacillus licheniformis G1, G3 strain as Bacillus velezensis G3, G15 strain as Brevibacterium frigoritolerans G15, and G21 strain as Bacillus pumilus G21.

본 연구에서는 제주도 양식장에서 사육되고 있는 붉바리 장내에서 균주를 분리·동정하여, 산업적으로 활용할 수 있는 프로바이오틱스의 잠재적 가능성을 평가하였다. 붉바리 장내에서 순수 분리된 129균주를 대상으로 1차적으로 자체적인 간이 항균활성 실험을 통해 clear zone이 10 mm 이상 되는 12균주를 선별하여 내담즙성, pH 농도별 내산성, 항산화 활성, 항생제 내성, API kti을 이용한 생리생화학적 특성 실험에 이용하였다. 각 특성 실험을 통해 probiotics으로 잠재적 가능성을 가진 균으로 선발되어진 미생물은 G1, G3, G15, G21, B1, B2, B3, B5 총 8종이다. 8종 중 B균주 그룹(B1, B2, B3, B5)은 G균주 그룹(G1, G3, G15, G21)보다 유의하게 높은 활성을 나타내었다. 선발되어진 미생물의 16S rRNA 염기서열 분석을 통한 계통 분석을 한 결과를 바탕으로 B1 균주는 L. paracasei B1, B2는 L. lactis B2, B3 균주는 Lb. plantarum B3, B5 균주는 L. lactis subsp. hordniae B5, G1은 B. licheniformis G1, G3는 B. velezensis G3, G15는 B. frigoritolerans G15, G21 균주는 B. pumilus G21로 명명하였다.

Keywords

Acknowledgement

This research was supported by the 2024 scientific promotion program funded by Jeju National University.

References

  1. Gilliland S, Morelli L, Reid G. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, pp. 3-22. Report of a Joint FAO/WHO Expert Consultation, Cordoba, Argentina.
  2. Park JM, Lee JH, Hong SI. 2014. A research trend analysis of probiotics and prebiotics. Food Sci. Ind. 47: 54-66.
  3. Seo Y, Yoon Y, Kim S. 2019. Functionality and safety of probiotics. J. Dairy Sci. Biotechnol. 37: 94-101.
  4. Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197-215.
  5. Gueimonde M, Salminen S. 2006. New methods for selecting and evaluating probiotics. Dig. Liver Dis. 38: S242-S247.
  6. Seong YJ, Park MS. 2019. Trends in probiotics product. Food Sci. Ind. 52: 229-240.
  7. Donatella C, Caterina F. 2016. Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol. 54: 172-178.
  8. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412.
  9. Sekar A, Packyam M, Kim K. 2016. Growth enhancement of shrimp and reduction of shrimp infection by Vibrio parahaemolyticus and white spot syndrome virus with dietary administration of Bacillus sp. Mk22. Microbiol. Biotechnol. Lett. 44: 261-267.
  10. Ziaei-Nejad S, HabibiRezaei M, Azari Takami G, Lovett D, Mirvaghefi AR, Shakouri M. 2006. The effect of Bacillus sp. bacteria used as probiotics on digestive enzymes activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252: 516-524.
  11. Jang IS, Kim DH, Heo MS. 2013. Dietary administration of pro-biotics, Bacillus sp. IS-2, enhance the innate immune response and disease resistance of Paralichthys olivaceus against Streptococcus iniae. Korean J. Microbiol. 49: 172-178.
  12. Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P. 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191: 271-288.
  13. Mongkolthanaruk W. 2012. Classification of Bacillus beneficial substances related to plants, humans and animals. J. Microbiol. Biotechnol. 22: 1597-1604.
  14. Nagorska K, Bikowski M, Obuchowski M. 2007. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol. 54: 495-508.
  15. Sugita H. 1998. Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish. Aquaculture 165: 269-280.
  16. Sim MU, Han DK. 2023. Assessment of probiotic potential of Bacillus spp. isolated from Ulleungdo, Korea. J. Mar. Life Sci. 8: 50-55.
  17. Walker DK, Gilliland SE. 1993. Relationship among Bile tolerance, Bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci. 76: 956-961.
  18. Kawagan S. 1996. Protocol for control of body functional material in food. Kakuen press center, Japan. pp. 8-15.
  19. Eugene F, Gilbert HS. 1983. The pyrogallol assay for superoxide dismutase; absence in glutathione artifact. Anal. Biochem. 137: 50-53.
  20. Marklud S, Markuld G. 1974. Involvement of the superoxide anion radical in the autoxidation of purogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 467-474.
  21. Lim YS, Kim JY, Kang HC. 2019. Isolation and identification of lactic acid bacteria with probiotic activities from Kimchi and their fermentation properties in Milk. J. Milk Sci. Biotechnol. 37: 115-128.
  22. Kim MC, Heo MS. 2005. Identification and cultural characterization of antioxidant producing bacteria isolated from the Jeju coasts. Korean J. Life. Sci. 15: 749-754.
  23. Kim MC, Kim JS, Kim YB, Harikrishan R, Han YJ, Heo MS. 2009. Identification and antioxidant activity of marine actinomycetes Streptomyces sp. ACT-1. Korean J. Microbiol. 45: 397-403.
  24. Kim HJ, Yeo SH, Cho SC, Bae DW, Yoon JH, Hwang YI, et al. 2002. Isolation and Identification of antioxidant-producing marine bacteria and medium optimization. Korean J. Microbiol. Biotechol. 30: 223-229.
  25. Miquel J, Quintanilha AT, Weber HU. 1989. Handbook of free radicals and antoxidants in biomedicine. CRC press I. pp. 223.
  26. Thrush MA, Mimnaugh EG, Gram TE. 1982. Activation of pharmacologic agents to radical intermediates. Implications for the role of free radicals in drug action and toxicity. Biochem. Pharmacol. 31: 3335-3346.
  27. Mathur S, Singh R. 2005. Antibiotic resistance in food lactic acid bacteria - A review. Int. J. Food Microbiol. 105: 281-295.
  28. Chon JW, Seo KH, Bae DY, Jeong DK, Song KY. 2020. Status and prospect of lactic acid bacteria with antibiotic resistance. J. Dairy Sci. Biotechnol. 38: 70-88.
  29. Collins MD, Phillips BA, Zanoni P. 1989. Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 39: 105-108.
  30. Schleifer KH, Kraus J, Dvorak C, Kilpper-Balz R, Collins MD, Fischer W. 1986. Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst. Appl. Microbiol. 6: 183-195.
  31. Giraffa G. 2014. Overview of the ecology and biodiversity of the LAB. In: Holzapfel WH, Wood BJB. Editors. Lactic acid bacteria biodiversity and taxonomy. Chichester, UK: John Wily & Sons. pp. 45-54.
  32. Alvarez-Cisneros YM, Ponce-Alquicira E. 2018. Antibiotic resistance in lactic acid bacteria. In: Kumar Y, editor. Antimicrobial resistance: a global threat. London: Intech Open. pp. 53-73.
  33. Orla-Jensen S. 1919. The lactic acid bacteria. Host & Son, Copenhagen. pp. 1-118.
  34. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. 1923. Bergey's Manual of Determinative Bacteriology, 1st ed. The Williams and Wilkins Co., Baltimore. pp. 1-442.
  35. Gad GFM, Abdel-Hamid AM, Farag ZSH. 2014. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. Braz. J. Microbiol. 45: 25-32.
  36. Latorre-Guzman B, Kado C, Kunkee R. 1977. Lactobacillus hordniae, a New Species from the Leafhopper (Hordnia circellata). Int. J. Syst. Bacteriol. 27: 362-370.
  37. Weigmann H. 1898. Uber zwei an der Kasereifung beteiligte Bakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II. 4: 820-834.
  38. Chester FD. 1901. A manual of determinative bacteriology. The Macmillan Co., New York, pp. 1-401.
  39. Kim JW, Jun KD, Kang JS, Ha BJ, Lee JH. 2005. Characterization of Bacillus licheniformis as a Probiotic. Korean J. Biotechnol. Bioeng. 20: 359-362.
  40. Cristina RG, Victoria B, Fernando MC, Inmaculada L, Emilia Q. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55(Pt 1): 191-195.
  41. Han B, Kim MJ, Ryu DJ, Lee KE, Lee BH, Lee EU, et al. 2019. Isolation and characterization of acid-resistanct and halophilic bacteria using cultivation technique in Jeju island. Korean J. Microbiol. 55: 248-257.
  42. Delaporte B, Sasson A. 1967. [Study of bacteria from arid soils of Morocco: Brevibacterium haloterans n. sp. and Brevibacterium frigoritolerans n. sp]. C R Acad. Hebd. Seances Acad. Sci. D 264: 2257-2260.
  43. Jung TK, Kim JH, Song HG. 2012. Antifungal activity and plant growth promotion by Rhizobacteria inhibiting growth of plant pathogenic fungi. Korean J. Microbiol. 48: 16-21.
  44. Meyer A, Gottheil O. 1901. Botanische beschreibung einiger bodenbakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II. 7: 680-691.
  45. Lee MY, Kim EH. 2015. Biological Characters of Bacillus pumilus CPB-St inhibiting the growth of fish pathogenic streptococci. J. Fish Pathol. 28: 63-69.
  46. Park IS, Oh RK, Lee MJ, Moon JY, Kim YO, Nam BH, et al. 2015. Antibacterial activity of bacteria isolated from rocks on the seashore. Korean J. Fish Aquat. Sci. 48: 904-912.