References
- Lee H, Myung W, Koh WJ, Moon SM, Jhun BW. Epidemiology of nontuberculous mycobacterial infection, South Korea, 2007-2016. Emerg Infect Dis 2019;25:569-572. https://doi.org/10.3201/eid2503.181597
- Kwon YS, Koh WJ. Diagnosis and treatment of nontuberculous mycobacterial lung disease. J Korean Med Sci 2016;31:649-659. https://doi.org/10.3346/jkms.2016.31.5.649
- Matsuyama M, Matsumura S, Nonaka M, et al. Pathophysiology of pulmonary nontuberculous mycobacterial (NTM) disease. Respir Investig 2023;61:135-148. https://doi.org/10.1016/j.resinv.2022.12.002
- Abe Y, Fukushima K, Hosono Y, et al. Host immune response and novel diagnostic approach to NTM infections. Int J Mol Sci 2020;21:4351.
- Honda JR, Virdi R, Chan ED. Global environmental nontuberculous mycobacteria and their contemporaneous manmade and natural niches. Front Microbiol 2018;9:2029.
- Munoz-Egea MC, Akir A, Esteban J. Mycobacterium biofilms. Biofilm 2023;5:100107.
- DE Griffith. Pathogenesis of nontuberculous mycobacterial infections [Internet]. Waltham (MA): UpToDate, c2023 [cited 2024 Jul 10]. Available from: https://medilib.ir/uptodate/show/5345.
- Sousa S, Bandeira M, Carvalho PA, Duarte A, Jordao L. Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int J Mycobacteriol 2015;4:36-43. https://doi.org/10.1016/j.ijmyco.2014.11.065
- Zamora N, Esteban J, Kinnari TJ, Celdran A, Granizo JJ, Zafra C. In-vitro evaluation of the adhesion to polypropylene sutures of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect 2007;13:902-907. https://doi.org/10.1111/j.1469-0691.2007.01769.x
- Schorey JS, Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 2008;18:832-841. https://doi.org/10.1093/glycob/cwn076
- Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004;2:95-108. https://doi.org/10.1038/nrmicro821
- Rhoades ER, Archambault AS, Greendyke R, Hsu FF, Streeter C, Byrd TF. Mycobacterium abscessus glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J Immunol 2009;183:1997-2007. https://doi.org/10.4049/jimmunol.0802181
- Rodriguez-Sevilla G, Garcia-Coca M, Romera-Garcia D, et al. Non-tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model. Int J Med Microbiol 2018;308:413-423. https://doi.org/10.1016/j.ijmm.2018.03.003
- Rodriguez-Sevilla G, Crabbe A, Garcia-Coca M, AguileraCorrea JJ, Esteban J, Perez-Jorge C. Antimicrobial treatment provides a competitive advantage to Mycobacterium abscessus in a dual-species biofilm with Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019;63:e01547-19.
- Honda JR, Knight V, Chan ED. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med 2015;36:1-11. https://doi.org/10.1016/j.ccm.2014.10.001
- Puzo G. The carbohydrate- and lipid-containing cell wall of mycobacteria, phenolic glycolipids: structure and immunological properties. Crit Rev Microbiol 1990;17:305-327. https://doi.org/10.3109/10408419009105730
- Tran T, Bonham AJ, Chan ED, Honda JR. A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb) 2019;115:96-107. https://doi.org/10.1016/j.tube.2019.02.008
- Maeda N, Nigou J, Herrmann JL, et al. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 2003;278:5513-5516. https://doi.org/10.1074/jbc.C200586200
- Vignal C, Guerardel Y, Kremer L, et al. Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism. J Immunol 2003;171:2014-2023. https://doi.org/10.4049/jimmunol.171.4.2014
- Wieland CW, Knapp S, Florquin S, et al. Non-mannose-capped lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am J Respir Crit Care Med 2004;170:1367-1374. https://doi.org/10.1164/rccm.200404-525OC
- Freeman R, Geier H, Weigel KM, Do J, Ford TE, Cangelosi GA. Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium. Appl Environ Microbiol 2006;72:7554-7558. https://doi.org/10.1128/AEM.01633-06
- Byrd TF, Lyons CR. Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infect Immun 1999;67:4700-4707. https://doi.org/10.1128/IAI.67.9.4700-4707.1999
- Sanguinetti M, Ardito F, Fiscarelli E, et al. Fatal pulmonary infection due to multidrug-resistant Mycobacterium abscessus in a patient with cystic fibrosis. J Clin Microbiol 2001;39:816-819. https://doi.org/10.1128/JCM.39.2.816-819.2001
- Torrelles JB, Ellis D, Osborne T, et al. Characterization of virulence, colony morphotype and the glycopeptidolipid of Mycobacterium avium strain 104. Tuberculosis (Edinb) 2002;82:293-300. https://doi.org/10.1054/tube.2002.0373
- Pedrosa J, Florido M, Kunze ZM, et al. Characterization of the virulence of Mycobacterium avium complex (MAC) isolates in mice. Clin Exp Immunol 1994;98:210-216. https://doi.org/10.1111/j.1365-2249.1994.tb06127.x
- Schaefer WB, Davis CL, Cohn ML. Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am Rev Respir Dis 1970;102:499-506.
- Nishimura T, Shimoda M, Tamizu E, et al. The rough colony morphotype of Mycobacterium avium exhibits high virulence in human macrophages and mice. J Med Microbiol 2020;69:1020-1033. https://doi.org/10.1099/jmm.0.001224
- Sweet L, Schorey JS. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol 2006;80:415-423. https://doi.org/10.1189/jlb.1205702
- Takegaki Y. Effect of serotype specific glycopeptidolipid (GPL) isolated from Mycobacterium avium complex (MAC) on phagocytosis and phagosome-lysosome fusion of human peripheral blood monocytes. Kekkaku 2000;75:9-18.
- Cebula BR, Rocco JM, Maslow JN, Irani VR. Mycobacterium avium serovars 2 and 8 infections elicit unique activation of the host macrophage immune responses. Eur J Clin Microbiol Infect Dis 2012;31:3407-3412. https://doi.org/10.1007/s10096-012-1709-4
- McGarvey J, Bermudez LE. Pathogenesis of nontuberculous mycobacteria infections. Clin Chest Med 2002;23:569-583. https://doi.org/10.1016/S0272-5231(02)00012-6
- Bermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 1996;64:1400-1406.
- Lin Y, Zhang M, Barnes PF. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 1998;66:1121-1126. https://doi.org/10.1128/IAI.66.3.1121-1126.1998
- Abbas AK, Lichtman AH, Pillai S. 김평형, 박석래, 유제욱, 윤지희, 이기종, 장용석 역. 핵심면역학. 6판. 서울: 법문에듀케이션, 2020.
- Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017;74:1625-1648. https://doi.org/10.1007/s00018-016-2422-8
- Gordon S. Phagocytosis: an immunobiologic process. Immunity 2016;44:463-475. https://doi.org/10.1016/j.immuni.2016.02.026
- Shamaei M, Mirsaeidi M. Nontuberculous Mycobacteria, macrophages, and host innate immune response. Infect Immun 2021;89:e0081220.
- Shin DM, Yang CS, Yuk JM, et al. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell Microbiol 2008;10:1608-1621. https://doi.org/10.1111/j.1462-5822.2008.01151.x
- Kerscher B, Willment JA, Brown GD. The dectin-2 family of C-type lectin-like receptors: an update. Int Immunol 2013;25:271-277. https://doi.org/10.1093/intimm/dxt006
- Yonekawa A, Saijo S, Hoshino Y, et al. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 2014;41:402-413. https://doi.org/10.1016/j.immuni.2014.08.005
- Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011;2011:405310.
- Yu X, Zeng J, Xie J. Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control. Biochimie 2014;102:1-8. https://doi.org/10.1016/j.biochi.2014.02.012
- Sampaio EP, Elloumi HZ, Zelazny A, et al. Mycobacterium abscessus and M. avium trigger Toll-like receptor 2 and distinct cytokine response in human cells. Am J Respir Cell Mol Biol 2008;39:431-439. https://doi.org/10.1165/rcmb.2007-0413OC
- Lee SJ, Noh KT, Kang TH, et al. The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4. BMB Rep 2014;47:115-120. https://doi.org/10.5483/BMBRep.2014.47.2.277
- Lee SJ, Shin SJ, Lee SJ, et al. Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response. BMB Rep 2014;47:512-517. https://doi.org/10.5483/BMBRep.2014.47.9.001
- Shimada K, Takimoto H, Yano I, Kumazawa Y. Involvement of mannose receptor in glycopeptidolipid-mediated inhibition of phagosome-lysosome fusion. Microbiol Immunol 2006;50:243-251. https://doi.org/10.1111/j.1348-0421.2006.tb03782.x
- Kano H, Doi T, Fujita Y, Takimoto H, Yano I, Kumazawa Y. Serotype-specific modulation of human monocyte functions by glycopeptidolipid (GPL) isolated from Mycobacterium avium complex. Biol Pharm Bull 2005;28:335-339. https://doi.org/10.1248/bpb.28.335
- Roux AL, Viljoen A, Bah A, et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 2016;6:160185.
- Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr 2019;7:10.1128/microbiolspec.gpp3-0022-2018.
- Martin CJ, Booty MG, Rosebrock TR, et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 2012;12:289-300. https://doi.org/10.1016/j.chom.2012.06.010
- Chen M, Gan H, Remold HG. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 2006;176:3707-3716. https://doi.org/10.4049/jimmunol.176.6.3707
- Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 2010;8:668-674. https://doi.org/10.1038/nrmicro2387
- Early J, Fischer K, Bermudez LE. Mycobacterium avium uses apoptotic macrophages as tools for spreading. Microb Pathog 2011;50:132-139. https://doi.org/10.1016/j.micpath.2010.12.004
- Helguera-Repetto AC, Chacon-Salinas R, Cerna-Cortes JF, et al. Differential macrophage response to slow- and fast-growing pathogenic mycobacteria. Biomed Res Int 2014;2014:916521.
- Appelberg R, Pedrosa JM, Silva MT. Host and bacterial factors control the Mycobacterium avium-induced chronic peritoneal granulocytosis in mice. Clin Exp Immunol 1991;83:231-236. https://doi.org/10.1111/j.1365-2249.1991.tb05620.x
- Petrofsky M, Bermudez LE. Neutrophils from Mycobacterium avium-infected mice produce TNF-alpha, IL-12, and IL-1 beta and have a putative role in early host response. Clin Immunol 1999;91:354-358.
- Bermudez LE, Petrofsky M, Stevens P. Treatment with recombinant granulocyte colony-stimulating factor (filgrastin) stimulates neutrophils and tissue macrophages and induces an effective non-specific response against Mycobacterium avium in mice. Immunology 1998;94:297-303. https://doi.org/10.1046/j.1365-2567.1998.00529.x
- Appelberg R, Castro AG, Pedrosa J, Silva RA, Orme IM, Minoprio P. Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection. Infect Immun 1994;62:3962-3971. https://doi.org/10.1128/iai.62.9.3962-3971.1994
- Kato T, Hakamada R, Yamane H, Nariuchi H. Induction of IL-12 p40 messenger RNA expression and IL-12 production of macrophages via CD40-CD40 ligand interaction. J Immunol 1996;156:3932-3938. https://doi.org/10.4049/jimmunol.156.10.3932
- Altare F, Durandy A, Lammas D, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998;280:1432-1435. https://doi.org/10.1126/science.280.5368.1432
- Dorman SE, Holland SM. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 1998;101:2364-2369. https://doi.org/10.1172/JCI2901
- Florido M, Appelberg R. Characterization of the deregulated immune activation occurring at late stages of mycobacterial infection in TNF-deficient mice. J Immunol 2007; 179:7702-7708. https://doi.org/10.4049/jimmunol.179.11.7702
- Winthrop KL, Baxter R, Liu L, et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann Rheum Dis 2013;72:37-42. https://doi.org/10.1136/annrheumdis-2011-200690
- Lim A, Allison C, Price P, Waterer G. Susceptibility to pulmonary disease due to Mycobacterium avium-intracellulare complex may reflect low IL-17 and high IL-10 responses rather than Th1 deficiency. Clin Immunol 2010;137:296-302. https://doi.org/10.1016/j.clim.2010.07.011
- Kim SY, Koh WJ, Kim YH, et al. Importance of reciprocal balance of T cell immunity in Mycobacterium abscessus complex lung disease. PLoS One 2014;9:e109941.
- Wu UI, Olivier KN, Kuhns DB, et al. Patients with idiopathic pulmonary nontuberculous mycobacterial disease have normal Th1/Th2 cytokine responses but diminished Th17 cytokine and enhanced granulocyte-macrophage colony-stimulating factor production. Open Forum Infect Dis 2019;6:ofz484.
- Ratnatunga CN, Lutzky VP, Kupz A, et al. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol 2020;11:303.
- Greinert U, Schlaak M, Rusch-Gerdes S, Flad HD, Ernst M. Low in vitro production of interferon-gamma and tumor necrosis factor-alpha in HIV-seronegative patients with pulmonary disease caused by nontuberculous mycobacteria. J Clin Immunol 2000;20:445-452. https://doi.org/10.1023/A:1026407815946
- Tsuyuguchi I, Kawasumi H, Takashima T, Tsuyuguchi T, Kishimoto S. Mycobacterium avium-Mycobacterium intracellular complex-induced suppression of T-cell proliferation in vitro by regulation of monocyte accessory cell activity. Infect Immun 1990;58:1369-1378. https://doi.org/10.1128/iai.58.5.1369-1378.1990
- Bermudez LE, Petrofsky M. Host defense against Mycobacterium avium does not have an absolute requirement for major histocompatibility complex class I-restricted T cells. Infect Immun 1999;67:3108-3111. https://doi.org/10.1128/IAI.67.6.3108-3111.1999
- Gilbertson B, Zhong J, Cheers C. Anergy, IFN-gamma production, and apoptosis in terminal infection of mice with Mycobacterium avium. J Immunol 1999;163:2073-2080. https://doi.org/10.4049/jimmunol.163.4.2073