Acknowledgement
This project was supported by National Key Technology Research and Development Program of China (2014BAA04B00) and National Natural Science Foundation of China (51207117).
References
- Zhao Dongmei, X.U., Chenyu, T.R., et al.: Review on flexible regulation of multivariate distributed energy storage on distribution side of new power system. Chin. J. Electr. Eng. 99, 1-23 (2022)
- Kebede, A., Kalogiannis, T., Mierlo, J., Berecibar, M.: A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 159, 112213 (2022). https://doi.org/10.1016/j.rser.2022. 112213
- Lee, S., Kim, J., Lee, J., Cho, B.H.: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. Power Sources 185, 1367-1373 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.103
- Zhang, S., Guo, X., Dou, X., et al.: A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustain. Energy Technol. Assess. 40, 100752 (2020)
- Zhao, Bo., Juan, Hu., Shouping, Xu., et al.: Estimation of the SOC of energy-storage lithium batteries based on the voltage increment. IEEE Access 8, 198706-198713 (2020) https://doi.org/10.1109/ACCESS.2020.3031327
- Orchard, M.E., Hevia-Koch, P., Zhang, B., Tang, L.: Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries. IEEE Trans. Ind. Electron. 60, 5260-5269 (2013). https://doi.org/10.1109/TIE.2012.2224079
- Tulsyan, A., Tsai, Y., Gopaluni, R.B., Braatz, R.D.: State-of-charge estimation in lithium-ion batteries: a particle filter approach. Power Sources 331, 208-223 (2016) https://doi.org/10.1016/j.jpowsour.2016.08.113
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation. Power Sources 134, 277-292 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.033
- Campestrini, C., Heil, T., Kosch, S., Jossen, A.: A comparative study and review of different Kalman filters by applying an enhanced validation method. Energy Storage 8, 142-159 (2016). https://doi.org/10.1016/j.est.2016.10.004
- Liu, Y.F., Li, J.Q., Zhang, G., Hua, B., Xiong, N.: State of charge estimation of lithium-ion batteries based on temporal convolutional network and transfer learning. IEEE Access 9, 34177-34187 (2021). https://doi.org/10.1109/ACCESS.2021.3057371
- Yidan, Xu., Minghui, Hu., Chunyun, Fu., et al.: State of charge estimation for lithium-ion batteries based on temperaturedependent second-order RC model. Electronics 8, 1012 (2019). https://doi.org/10.3390/electronics8091012
- Chung, D.-W., Ko, J.-H., Yoon, K.-Y.: State-of-charge estimation of lithium-ion batteries using LSTM deep learning method. J. Electr. Eng. Technol. 17, 1931-1945 (2022) https://doi.org/10.1007/s42835-021-00954-8
- Deng, Ye., Yueli, Hu., Cao, Y.: An improved algorithm of SOC testing based on open-circuit voltage-ampere hour method. Intell. Comput. Smart Grid Electr. Veh. 463, 258-267 (2014)
- Luo, Y., Qi, P., Kan, Y., et al.: State of charge estimation method based on the extended Kalman filter algorithm with consideration of time-varying battery parameters. Int. J. Energy Res. 44(13), 10538-10550 (2020). https://doi.org/10.1002/er.5687
- Liaw, B.Y., Nagasubramanian, G., Jungst, R.G., Doughty, D.H.: Modeling of lithium ion cells-a simple equivalentcircuit model approach. Solid State Ion. 175(1-4), 835-839 (2004) https://doi.org/10.1016/j.ssi.2004.09.049
- Wang, Qi., Li, F., Tang, Yi., Yan, Xu.: Integrating model-driven and data-driven methods for power system frequency stability assessment control. IEEE Trans. Power Syst. 34(6), 4557 (2019). https://doi.org/10.1109/TPWRS.2019.29195 22
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. part 1. Background. J. Power. Sources 134(2), 252-261 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.031
- Song, Z., Wu, X., Li, X., et al.: Current profile optimization for combined state of charge and state of health estimation of lithium ion battery based on Cramer-Rao bound analysis. IEEE Trans. Power Electron. 34(7), 7067-7078 (2019) https://doi.org/10.1109/TPEL.2018.2877294
- Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1753-1780 (1997) https://doi.org/10.1162/neco.1997.9.8.1735
- Zaremba, W., Sutskever, I., Vinyals, O. "Recurrent neural network regularization,"arXiv preprint arXiv: 1409.2329 (2014)