DOI QR코드

DOI QR Code

Model-free PZC filter-based multi-loop speed controller for servo drives

  • Hee‑Sung Lim (Graduate School of Electrical and Computer Engineering, Ajou University) ;
  • Seok‑Kyoon Kim (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Kyo‑Beum Lee (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2023.12.22
  • Accepted : 2024.05.21
  • Published : 2024.08.20

Abstract

This paper derives an advanced multi-loop speed feedback system equipped with model-free pole-zero cancellation (PZC) filters for the position and current measurements of servo drives. The proposed feedback system does not necessitate an exact system model, and it renders the transfer function of each loop in a first-order low-pass filter form by involving active damping terms. Furthermore, the PZC filters output the desired speed and current information for each of the loops along the first-order convergent system, independent of the system model. An experimental platform involving a 500 W brushless DC motor, with a digital signal processor as a controller, validates the practical improvement of the proposed feedback system.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20225500000110).

References

  1. Woo, T.G., Kim, B.J., Yoon, Y.D.: Mechanical resonance suppression method based on active disturbance rejection control in two-mass servo system. J. Power Electron. 22, 1324-1333 (2022) https://doi.org/10.1007/s43236-022-00473-3
  2. Liu, H., Wang, Y., Shan, X.: Full closed loop-based dynamic accuracy enhancement for elastic joints. J. Power Electron. 22, 959-969 (2022) https://doi.org/10.1007/s43236-022-00438-6
  3. Lee, H., Kim, S.-K., Lee, K.-B.: Nonlinear output-feedback speed servo systems through active damping injection and position filtering approaches without current feedback. J. Power Electron. 22, 1199-1208 (2022) https://doi.org/10.1007/s43236-022-00451-9
  4. Jo, H.-R., Kim, Y.-J., Lee, K.-B.: LCL-filter design based on modulation index for grid-connected three-level hybrid ANPC inverters. J. Electr. Eng. Technol. 16, 1517-1525 (2021) https://doi.org/10.1007/s42835-021-00703-x
  5. Cho, D.-H., Lee, K.-B.: Sensorless direct torque control for interior permanent-magnet synchronous motors using square-wavetype stator flux injection at low-speed regions. J. Electr. Eng. Technol. 17, 329-337 (2022) https://doi.org/10.1007/s42835-021-00866-7
  6. Kim, S.-K., Ahn, C.K.: Active-damping speed tracking technique for permanent magnet synchronous motors with transient performance boosting mechanism. IEEE Trans. Ind. Inf. 18, 2171-2179 (2022) https://doi.org/10.1109/TII.2021.3104337
  7. Park, J.K., Lee, J.-H., Kim, S.-K., Ahn, C.K.: Output-feedback speed-tracking control without current feedback for BLDCMs based on active-damping and invariant surface approach. IEEE Trans. Circuits Syst. 68, 2528-2532 (2021)
  8. Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F.: Control in power electronics-selected problems. Academic Press, Cambridge (2002)
  9. Andeescu, G.-D., Pitic, C., Blaabjerg, F., Boldea, I.: Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives. IEEE Trans. Energy Convers. 23, 393-402 (2008) https://doi.org/10.1109/TEC.2007.914386
  10. Tang, L., Zhong, L., Rahman, M., Hu, Y.: A novel direct torque control for interior permanent-magnet synchronous machine drive with low ripple in torque and flux - a speed-senseroless approach. IEEE Trans. Ind. Appl. 39, 1748-1756 (2003) https://doi.org/10.1109/TIA.2003.818981
  11. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics, 2nd edn. Springer-Verlag, New York (2001)
  12. Olalla, C., Leyva, R., Queinnec, I., Maksimovic, D.: Robust gainscheduled control of switched-mode DC-DC converters. IEEE Trans. Power Electron. 27, 3006-3019 (2012) https://doi.org/10.1109/TPEL.2011.2178271
  13. Sul, S.-K.: Control of electric machine drive systems, vol. 88. Wiley, Hoboken (2011)
  14. Zhang, H., Tan, P., Shangguan, X., et al.: Machine learning-based parameter identification method for wireless power transfer systems. J. Power Electron. 22, 1606-1616 (2022) https://doi.org/10.1007/s43236-022-00454-6
  15. Chu, Y., Li, J., Gu, J., et al.: Parameter identification and SOC estimation of lithium-ion batteries based on AGCOA-ASRCKF. J. Power Electron. 23, 308-319 (2023) https://doi.org/10.1007/s43236-022-00525-8
  16. Wang, Y., Su, J., Lai, J., et al.: Equivalent and identification of integrated coupling parameter of variable speed constant frequency brushless doubly fed generator. J. Power Electron. 22, 61-71 (2022) https://doi.org/10.1007/s43236-021-00346-1
  17. Wang, L., Feng, M., Tian, Z., et al.: On-line identifying stator winding short-circuit approach for a submersible motor based on faulty current monitoring. J. Power Electron. 22, 1872-1884 (2022) https://doi.org/10.1007/s43236-022-00495-x
  18. Kim, S.-K., Lee, J.-S., Lee, K.-B.: Self-tuning adaptive speed controller for permanent magnet synchronous motor. IEEE Trans. Power Electron. 32, 1493-1506 (2017) https://doi.org/10.1109/TPEL.2016.2543222
  19. Kim, S.-K.: Robust adaptive speed regulator with self-tuning law for surfaced-mounted permanent magnet synchronous motor. Control. Eng. Pract. 61, 55-71 (2017) https://doi.org/10.1016/j.conengprac.2017.01.014
  20. El-Sousy, F.F.M., Abuhasel, K.A.: Nonlinear robust optimal control via adaptive dynamic programming of permanent-magnet linear synchronous motor Drive for uncertain two-axis motion control system. IEEE Trans. Ind. Appl. 56, 1940-1952 (2020) https://doi.org/10.1109/TIA.2019.2961637
  21. Kim, S.-K., Kim, Y., Ahn, C.K.: Energy-shaping speed controller with time-varying damping injection for permanent-magnet synchronous motors, IEEE Trans. Circuits Syst. II Express Briefs 68, 381-385 (2021)
  22. Kim, S.-K., Ahn, C.K.: Position regulator with variable cut-off frequency mechanism for hybrid-type stepper motors, IEEE Trans. Circuits Syst. I Regul. Pap. 67, 3533-3540 (2020) https://doi.org/10.1109/TCSI.2020.2988044
  23. Errouissi, R., Ouhrouche, M., Chen, W.-H., Trzynadlowski, A.M.: Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator. IEEE Trans. Ind. Electron. 59, 3078-3088 (2012)
  24. Son, Y.I., Kim, I.H., Choi, D.S., Shim, H.: Robust cascade control of electric motor drives using dual reduced-order PI observer. IEEE Trans. Ind. Electron. 62, 3672-3682 (2015)
  25. Corradini, M.L., Ippoliti, G., Longhi, S., Orlando, G.: A quasisliding mode approach for robust control and speed estimation of PM synchronous motors. IEEE Trans. Ind. Electron. 59, 1096-1104 (2012) https://doi.org/10.1109/TIE.2011.2158035
  26. Geyer, T., Papafotieu, G., Morari, M.: Model predictive direct torque control-part I: concept, algorithm and analysis. IEEE Trans. Ind. Electron. 56, 1894-1905 (2009) https://doi.org/10.1109/TIE.2008.2007030
  27. Ahmed, A.A., Koh, B.K., Lee, Y.I.: A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors. IEEE Trans. Ind. Inf. 14, 1334-1346 (2018) https://doi.org/10.1109/TII.2017.2758393
  28. Tao, T., Zhao, W., Du, Y., Cheng, Y., Zhu, J.: Simplified faulttolerant model predictive control for a five-phase permanent-magnet motor with reduced computation burden. IEEE Trans. Power Electron. 35, 3850-3858 (2020)