DOI QR코드

DOI QR Code

New ZVZCS TL DC-DC converter with combined operation modes

  • Kexin Xu (School of Electrical and Control Engineering, Shaanxi University of Science and Technology) ;
  • Yong Shi (School of Electrical and Control Engineering, Shaanxi University of Science and Technology) ;
  • Yuting Wang (School of Electrical and Control Engineering, Shaanxi University of Science and Technology) ;
  • Qianhe Zhang (School of Electrical and Control Engineering, Shaanxi University of Science and Technology) ;
  • Zelong Feng (School of Electrical and Control Engineering, Shaanxi University of Science and Technology) ;
  • Xiaoxin Wang (School of Electrical and Control Engineering, Shaanxi University of Science and Technology)
  • 투고 : 2023.07.31
  • 심사 : 2024.02.28
  • 발행 : 2024.08.20

초록

Three-level DC-DC converters (TLDCs) have attracted industrial and academic attention because of low main switching voltage ratings, simple clamping structure, and good soft-switching characteristics. This paper proposes a new TLDC with combined operation modes, which can operate in both zero-voltage switching (ZVS) and zero-voltage zero-current switching (ZVZCS) modes. The proposes converter varies soft switching mode with a simple switching combination of Sr1 and Sr2, and follows the best efficiency curves over a wide load range. Compared to conventional ZVS or ZVZCS TLDCs, this solution minimizes the circulating current and increases the overall efficiency. In addition, the current stress of the flying capacitor is also low. And, all these good features are realized by two low VA rating MOSFETs. This paper discusses the circuit, operating principles, and some steady-state characteristics. Finally, experimental data from a 1 kW prototype demonstrates the validity and characteristics of the proposed converter.

키워드

과제정보

This work was supported by the Key Research and Development Project of Shaanxi Province under the Grant number 2024GX-YBXM-281.

참고문헌

  1. Bak, Y., Lee, Y.J., Lee, K.-B.: Dynamic characteristic improvement of phase-shift full-bridge center-tapped converters using a model predictive control. IEEE Trans. Ind. Elec. 69(2), 1488- 1497 (2022) https://doi.org/10.1109/TIE.2021.3057038
  2. Sun, W., Jin, X., Zhang, L., Hu, H., Xing, Y.: Analysis and design of a multi-resonant converter with a wide output voltage range for EV charger applications. J. Power Electron. 17(4), 849-859 (2017) https://doi.org/10.6113/JPE.2017.17.4.849
  3. Kim, S.-K., Lee, K.-B.: Current-sensorless energy-shaping output voltage-tracking control for dc/dc boost converters with damping adaptation mechanism. IEEE Trans. Power Electron. 37(8), 9266-9274 (2022) https://doi.org/10.1109/TPEL.2022.3159793
  4. Barbi, I., Gules, R., Redl, R., Sokal, N.O.: DC-DC converter: four switches V/sub pk/ = V/sub in//2, capacitive turn-of snubbing. ZV turn-on. IEEE Trans. Power Electron. 19(4), 918-927 (2004) https://doi.org/10.1109/TPEL.2004.830092
  5. Yao, Z., Lu, S.: Voltage self-balance mechanism based on zero-voltage switching for three-level DC-DC converter. IEEE Trans. Power Electron. 35(10), 10078-10087 (2020) https://doi.org/10.1109/TPEL.2020.2977881
  6. Xiong, L., Liu, X., Zhao, C., Zhuo, F.: A Fast and robust real-time detection algorithm of decaying DC transient and harmonic components in three-phase systems. IEEE Trans. Power Electron. 35(4), 3332-3336 (2020) https://doi.org/10.1109/TPEL.2019.2940891
  7. Pinheiro, J.R., Barbi, I.: The three-level ZVS-PWM DC-to-DC converter. IEEE Trans. Power Electron. 8(4), 486-492 (1993) https://doi.org/10.1109/63.261019
  8. E. Deschamps, I. Barbi: A comparison among three-level ZVSPWM isolated DC-to-DC converters. IECON'98. In: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 1024-1029 (1998) https://doi.org/10.1109/IECON.1998.724235
  9. Canales, F., Barbosa, P. M., Burdio, J. M., Lee, F. C.: A zero voltage switching three-level DC/DC converter. INTELEC. In: Twenty-Second International Telecommunications Energy Conference (Cat. No.00CH37131), Phoenix, AZ, USA, pp 512-517 (2000)
  10. Ruan, X., Dayu, Xu., Zhou, L., Li, B., Chen, Q.: Zero-voltage-switching PWM three-level converter with two clamping diodes. IEEE Trans. Ind. Elec. 49(4), 790-799 (2002) https://doi.org/10.1109/TIE.2002.801053
  11. Lin, B.-R.: Hybrid DC/DC converter based on dual three-level circuit and half-bridge circuit. IET Power Electron. 9(4), 817-824 (2016) https://doi.org/10.1049/iet-pel.2015.0255
  12. Liu, D., Deng, F., Gong, Z., Chen, Z.: Input-parallel output-parallel three-level DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents. IEEE J. Emerg. Sel Top. Power Electron. 5(3), 1122-1132 (2017) https://doi.org/10.1109/JESTPE.2017.2649221
  13. Lee, H.R., Park, J., Lee, K.: Optimal soft-switching scheme for bidirectional DC-DC converters with auxiliary circuit. J. Power Electron. 18(3), 681-693 (2018) https://doi.org/10.6113/JPE.2018.18.3.681
  14. Guo, Z., Sun, K., Zhang, L.: Analysis and evaluation of dual half-bridge cascaded three-level DC-DC converter for reducing circulating current loss. IEEE J. Emerg. Sel. Top. Power Electron. 5(1), 351-362 (2017) https://doi.org/10.1109/JESTPE.2016.2604853
  15. Kim, K.-W., Han, J.-K., Lee, B.-H., Moon, G.-W.: High-efficiency three-level DC-DC converter with reduced circulating current and rectifier voltage stress. IEEE Trans. Power Electron. 35(3), 2668-2679 (2020) https://doi.org/10.1109/TPEL.2019.2925462
  16. Canales, F., Barbosa, P.M., Lee, F.C.: A zero-voltage and zero current-switching three level DC/DC converter. IEEE Trans. Power Electron. 17(6), 898-904 (2002) https://doi.org/10.1109/TPEL.2002.805609
  17. Carr, J.A., Rowden, B., Balda, J.C.: A three-level full-bridge zero-voltage zero-current switching converter with a simplified switching scheme. IEEE Trans. Power Electron. 24(2), 329-338 (2009) https://doi.org/10.1109/TPEL.2008.2007211
  18. Ning, G.F., Chen, W., Shu, L.C., Zhao, J.F., Cao, W., Mei, J., et al.: A hybrid resonant ZVZCS three-level converter for MVDC-connected offshore wind power collection systems. IEEE Trans. Power Electron. 33(8), 6633-6645 (2018) https://doi.org/10.1109/TPEL.2017.2758924
  19. Shi, Y., Wang, X., Xi, J., Gui, X., Yang, X.: Wide load range ZVZCS three-level DC-DC converter with compact structure. IEEE Trans. Power Electron. 34(6), 5032-5037 (2019) https://doi.org/10.1109/TPEL.2018.2881445
  20. Ruan, X., Chen, Z., Chen, W.: Zero-voltage-switching PWM hybrid full-bridge three-level converter. IEEE Trans. Power Electron. 20(2), 395-404 (2005) https://doi.org/10.1109/TPEL.2004.842985
  21. Ruan, X., Li, B.: Zero-voltage and zero-current-switching PWM hybrid full-bridge three-level converter. IEEE Trans. Ind. Electron. 52(1), 213-220 (2005) https://doi.org/10.1109/TIE.2004.837911
  22. Kim, D.-Y., Kim, J.-K., Moon, G.-W.: A three-level converter with reduced filter size using two transformers and flying capacitors. IEEE Trans. Power Electron. 28(1), 46-53 (2013) https://doi.org/10.1109/TPEL.2012.2191798
  23. Xu, G., Wang, J., Ning, G., et al.: A dual-transformer-based three-level DC-DC converter with wide ZVZCS switching range. IEEE Trans. Circuits Syst. II, Exp. Briefs. 70(2), 670-674 (2023)
  24. Liu, D., Deng, F., Gong, Z., Chen, Z.: Input-parallel output-parallel (IPOP) three-level (TL)DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents. IEEE J. Emerg. Sel. Top. Power Electron. 5(3), 1122-1132 (2017) https://doi.org/10.1109/JESTPE.2017.2649221
  25. Liu, W., Jin, H., Yao, W., Zhengyu, Lu.: An interleaved PWM method with better voltage-balancing ability for half-bridge three-level DC/DC converter. IEEE Trans. Power Electron. 33(6), 4594-4598 (2018) https://doi.org/10.1109/TPEL.2017.2772900
  26. Liu, D., Wang, Y., Deng, F., Chen, Z.: Balanced power device currents based modulation strategy for full-bridge three-level DC/DC converter. IEEE Trans. Power Electron. 35(2), 2008-2022 (2020) https://doi.org/10.1109/TPEL.2019.2918271
  27. Shi, Y., Hu, Y., Liu, B.: High performance flexible structure three-level DC-DC converter: a candidate DC interface for microgrids with distributed energy resources. IEEE Access. 9, 1032-1043 (2021) https://doi.org/10.1109/ACCESS.2020.3045499
  28. Erickson, R.W., Maksimovic, D.: Transformer design. In: Erickson, R.W., Maksimovic, D. (eds.) Fundamental of power electronics, pp. 485-502. Springer, Cham (2020)
  29. McLyman, C.W.T.: Transformer and inductor design handbook. CRC Press, Boca Raton (2004)
  30. Kim, J.-H., Kim, J.-K., Lee, J.-B., Moon, G.-W.: Load adaptive gate driving method for high efficiency under light-load conditions. IEEE Trans. Ind. Electron. 61(9), 4674-4679 (2014) https://doi.org/10.1109/TIE.2013.2290777
  31. Zhou, X., Donati, M., Amoroso, L., Lee, F.C.: Improved light-load efficiency for synchronous rectifier voltage regulator module. IEEE Trans. Power Electron. 15(5), 826-834 (2000) https://doi.org/10.1109/63.867671