과제정보
This work was supported by the Key Research and Development Project of Shaanxi Province under the Grant number 2024GX-YBXM-281.
참고문헌
- Bak, Y., Lee, Y.J., Lee, K.-B.: Dynamic characteristic improvement of phase-shift full-bridge center-tapped converters using a model predictive control. IEEE Trans. Ind. Elec. 69(2), 1488- 1497 (2022) https://doi.org/10.1109/TIE.2021.3057038
- Sun, W., Jin, X., Zhang, L., Hu, H., Xing, Y.: Analysis and design of a multi-resonant converter with a wide output voltage range for EV charger applications. J. Power Electron. 17(4), 849-859 (2017) https://doi.org/10.6113/JPE.2017.17.4.849
- Kim, S.-K., Lee, K.-B.: Current-sensorless energy-shaping output voltage-tracking control for dc/dc boost converters with damping adaptation mechanism. IEEE Trans. Power Electron. 37(8), 9266-9274 (2022) https://doi.org/10.1109/TPEL.2022.3159793
- Barbi, I., Gules, R., Redl, R., Sokal, N.O.: DC-DC converter: four switches V/sub pk/ = V/sub in//2, capacitive turn-of snubbing. ZV turn-on. IEEE Trans. Power Electron. 19(4), 918-927 (2004) https://doi.org/10.1109/TPEL.2004.830092
- Yao, Z., Lu, S.: Voltage self-balance mechanism based on zero-voltage switching for three-level DC-DC converter. IEEE Trans. Power Electron. 35(10), 10078-10087 (2020) https://doi.org/10.1109/TPEL.2020.2977881
- Xiong, L., Liu, X., Zhao, C., Zhuo, F.: A Fast and robust real-time detection algorithm of decaying DC transient and harmonic components in three-phase systems. IEEE Trans. Power Electron. 35(4), 3332-3336 (2020) https://doi.org/10.1109/TPEL.2019.2940891
- Pinheiro, J.R., Barbi, I.: The three-level ZVS-PWM DC-to-DC converter. IEEE Trans. Power Electron. 8(4), 486-492 (1993) https://doi.org/10.1109/63.261019
- E. Deschamps, I. Barbi: A comparison among three-level ZVSPWM isolated DC-to-DC converters. IECON'98. In: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 1024-1029 (1998) https://doi.org/10.1109/IECON.1998.724235
- Canales, F., Barbosa, P. M., Burdio, J. M., Lee, F. C.: A zero voltage switching three-level DC/DC converter. INTELEC. In: Twenty-Second International Telecommunications Energy Conference (Cat. No.00CH37131), Phoenix, AZ, USA, pp 512-517 (2000)
- Ruan, X., Dayu, Xu., Zhou, L., Li, B., Chen, Q.: Zero-voltage-switching PWM three-level converter with two clamping diodes. IEEE Trans. Ind. Elec. 49(4), 790-799 (2002) https://doi.org/10.1109/TIE.2002.801053
- Lin, B.-R.: Hybrid DC/DC converter based on dual three-level circuit and half-bridge circuit. IET Power Electron. 9(4), 817-824 (2016) https://doi.org/10.1049/iet-pel.2015.0255
- Liu, D., Deng, F., Gong, Z., Chen, Z.: Input-parallel output-parallel three-level DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents. IEEE J. Emerg. Sel Top. Power Electron. 5(3), 1122-1132 (2017) https://doi.org/10.1109/JESTPE.2017.2649221
- Lee, H.R., Park, J., Lee, K.: Optimal soft-switching scheme for bidirectional DC-DC converters with auxiliary circuit. J. Power Electron. 18(3), 681-693 (2018) https://doi.org/10.6113/JPE.2018.18.3.681
- Guo, Z., Sun, K., Zhang, L.: Analysis and evaluation of dual half-bridge cascaded three-level DC-DC converter for reducing circulating current loss. IEEE J. Emerg. Sel. Top. Power Electron. 5(1), 351-362 (2017) https://doi.org/10.1109/JESTPE.2016.2604853
- Kim, K.-W., Han, J.-K., Lee, B.-H., Moon, G.-W.: High-efficiency three-level DC-DC converter with reduced circulating current and rectifier voltage stress. IEEE Trans. Power Electron. 35(3), 2668-2679 (2020) https://doi.org/10.1109/TPEL.2019.2925462
- Canales, F., Barbosa, P.M., Lee, F.C.: A zero-voltage and zero current-switching three level DC/DC converter. IEEE Trans. Power Electron. 17(6), 898-904 (2002) https://doi.org/10.1109/TPEL.2002.805609
- Carr, J.A., Rowden, B., Balda, J.C.: A three-level full-bridge zero-voltage zero-current switching converter with a simplified switching scheme. IEEE Trans. Power Electron. 24(2), 329-338 (2009) https://doi.org/10.1109/TPEL.2008.2007211
- Ning, G.F., Chen, W., Shu, L.C., Zhao, J.F., Cao, W., Mei, J., et al.: A hybrid resonant ZVZCS three-level converter for MVDC-connected offshore wind power collection systems. IEEE Trans. Power Electron. 33(8), 6633-6645 (2018) https://doi.org/10.1109/TPEL.2017.2758924
- Shi, Y., Wang, X., Xi, J., Gui, X., Yang, X.: Wide load range ZVZCS three-level DC-DC converter with compact structure. IEEE Trans. Power Electron. 34(6), 5032-5037 (2019) https://doi.org/10.1109/TPEL.2018.2881445
- Ruan, X., Chen, Z., Chen, W.: Zero-voltage-switching PWM hybrid full-bridge three-level converter. IEEE Trans. Power Electron. 20(2), 395-404 (2005) https://doi.org/10.1109/TPEL.2004.842985
- Ruan, X., Li, B.: Zero-voltage and zero-current-switching PWM hybrid full-bridge three-level converter. IEEE Trans. Ind. Electron. 52(1), 213-220 (2005) https://doi.org/10.1109/TIE.2004.837911
- Kim, D.-Y., Kim, J.-K., Moon, G.-W.: A three-level converter with reduced filter size using two transformers and flying capacitors. IEEE Trans. Power Electron. 28(1), 46-53 (2013) https://doi.org/10.1109/TPEL.2012.2191798
- Xu, G., Wang, J., Ning, G., et al.: A dual-transformer-based three-level DC-DC converter with wide ZVZCS switching range. IEEE Trans. Circuits Syst. II, Exp. Briefs. 70(2), 670-674 (2023)
- Liu, D., Deng, F., Gong, Z., Chen, Z.: Input-parallel output-parallel (IPOP) three-level (TL)DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents. IEEE J. Emerg. Sel. Top. Power Electron. 5(3), 1122-1132 (2017) https://doi.org/10.1109/JESTPE.2017.2649221
- Liu, W., Jin, H., Yao, W., Zhengyu, Lu.: An interleaved PWM method with better voltage-balancing ability for half-bridge three-level DC/DC converter. IEEE Trans. Power Electron. 33(6), 4594-4598 (2018) https://doi.org/10.1109/TPEL.2017.2772900
- Liu, D., Wang, Y., Deng, F., Chen, Z.: Balanced power device currents based modulation strategy for full-bridge three-level DC/DC converter. IEEE Trans. Power Electron. 35(2), 2008-2022 (2020) https://doi.org/10.1109/TPEL.2019.2918271
- Shi, Y., Hu, Y., Liu, B.: High performance flexible structure three-level DC-DC converter: a candidate DC interface for microgrids with distributed energy resources. IEEE Access. 9, 1032-1043 (2021) https://doi.org/10.1109/ACCESS.2020.3045499
- Erickson, R.W., Maksimovic, D.: Transformer design. In: Erickson, R.W., Maksimovic, D. (eds.) Fundamental of power electronics, pp. 485-502. Springer, Cham (2020)
- McLyman, C.W.T.: Transformer and inductor design handbook. CRC Press, Boca Raton (2004)
- Kim, J.-H., Kim, J.-K., Lee, J.-B., Moon, G.-W.: Load adaptive gate driving method for high efficiency under light-load conditions. IEEE Trans. Ind. Electron. 61(9), 4674-4679 (2014) https://doi.org/10.1109/TIE.2013.2290777
- Zhou, X., Donati, M., Amoroso, L., Lee, F.C.: Improved light-load efficiency for synchronous rectifier voltage regulator module. IEEE Trans. Power Electron. 15(5), 826-834 (2000) https://doi.org/10.1109/63.867671