DOI QR코드

DOI QR Code

New targets for type 2-low asthma

  • Quang Luu Quoc (Department of Allergy and Clinical Immunology, Ajou University School of Medicine) ;
  • Youngwoo Choi (Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University) ;
  • Gyu-Young Hur (Department of Internal Medicine, Korea University College of Medicine) ;
  • Hae-Sim Park (Department of Allergy and Clinical Immunology, Ajou University School of Medicine)
  • Received : 2023.07.14
  • Accepted : 2023.10.30
  • Published : 2024.03.01

Abstract

Asthma is characterized by airway obstruction and inflammation, and presents significant diagnostic and treatment challenges. The concept of endotypes has improved understanding of the mechanisms of asthma and has stimulated the development of effective treatment strategies. Sputum profiles may be used to classify asthma into two major inflammatory types: type 2-high (T2H) and type 2-low (T2L) asthma. T2H, characterized by elevated type 2 inflammation, has been extensively studied and several effective biologic treatments have been developed. However, managing T2L is more difficult due to the lack of reliable biomarkers for accurate diagnosis and classification. Additionally, conventional anti-inflammatory therapy does not completely control the symptoms of T2L; therefore, further research is needed to identify effective biologic treatments. This review provides new insights into the clinical characteristics and underlying mechanisms of severe T2L and investigates potential therapeutic approaches to control the disease.

Keywords

Acknowledgement

This research was supported by the Korea Health Technology R&D Project with a Korea Health Industry Development Institute (KHIDI) grant, funded by the Ministry of Health and Welfare, Republic of Korea (Grant No. HR16C0001).

References

  1. Global Initiative for Asthma. Pocket guide for asthma management and prevention [Internet]. Fontana (WI): GINA, c2022 [cited 2023 May 13]. Available from: https://ginasthma.org/pocket-guide-for-asthma-management-and-prevention/.
  2. Cao TBT, Quoc QL, Yang EM, et al. Tissue inhibitor of metalloproteinase-1 enhances eosinophilic airway inflammation in severe asthma. Allergy Asthma Immunol Res 2023;15:451-472. https://doi.org/10.4168/aair.2023.15.4.451
  3. Quoc QL, Choi Y, Thi Bich TC, Yang EM, Shin YS, Park HS. S100A9 in adult asthmatic patients: a biomarker for neutrophilic asthma. Exp Mol Med 2021;53:1170-1179. https://doi.org/10.1038/s12276-021-00652-5
  4. Bich TCT, Quoc QL, Choi Y, et al. Serum amyloid A1: a biomarker for neutrophilic airway inflammation in adult asthmatic patients. Allergy Asthma Immunol Res 2022;14:40-58. https://doi.org/10.4168/aair.2022.14.1.40
  5. Lee DH, Jang JH, Sim S, Choi Y, Park HS. Epithelial autoantigen-specific IgG antibody enhances eosinophil extracellular trap formation in severe asthma. Allergy Asthma Immunol Res 2022;14:479-493. https://doi.org/10.4168/aair.2022.14.5.479
  6. Ricciardolo FLM, Carriero V, Bertolini F. Which therapy for non-type(T)2/T2-low asthma. J Pers Med 2021;12:10.
  7. Moore WC, Hastie AT, Li X, et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol 2014;133:1557-1563. e5. https://doi.org/10.1016/j.jaci.2013.10.011
  8. Shi B, Li W, Hao Y, et al. Characteristics of inflammatory phenotypes among patients with asthma: relationships of blood count parameters with sputum cellular phenotypes. Allergy Asthma Clin Immunol 2021;17:47.
  9. Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021;7:00309-2020. https://doi.org/10.1183/23120541.00309-2020
  10. Shah SP, Grunwell J, Shih J, Stephenson S, Fitzpatrick AM. Exploring the utility of noninvasive type 2 inflammatory markers for prediction of severe asthma exacerbations in children and adolescents. J Allergy Clin Immunol Pract 2019;7:2624-2633. e2. https://doi.org/10.1016/j.jaip.2019.04.043
  11. Heaney LG, Busby J, Hanratty CE, et al. Composite type-2 biomarker strategy versus a symptom-risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respir Med 2021;9:57-68. https://doi.org/10.1016/S2213-2600(20)30397-0
  12. Carr TF. Treatment approaches for the patient with T2 low asthma. Ann Allergy Asthma Immunol 2021;127:530-535. https://doi.org/10.1016/j.anai.2021.05.027
  13. Wen Y, Reid DW, Zhang D, Ward C, Wood-Baker R, Walters EH. Assessment of airway inflammation using sputum, BAL, and endobronchial biopsies in current and ex-smokers with established COPD. Int J Chron Obstruct Pulmon Dis 2010;5:327-334.
  14. Agache I, Strasser DS, Pierlot GM, Farine H, Izuhara K, Akdis CA. Monitoring inflammatory heterogeneity with multiple biomarkers for multidimensional endotyping of asthma. J Allergy Clin Immunol 2018;141:442-445. https://doi.org/10.1016/j.jaci.2017.08.027
  15. Schleich FN, Manise M, Sele J, Henket M, Seidel L, Louis R. Distribution of sputum cellular phenotype in a large asthma cohort: predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm Med 2013;13:11.
  16. Spanevello A, Confalonieri M, Sulotto F, et al. Induced sputum cellularity. Reference values and distribution in normal volunteers. Am J Respir Crit Care Med 2000;162(3 Pt 1):1172-1174. https://doi.org/10.1164/ajrccm.162.3.9908057
  17. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 2006;11:54-61. https://doi.org/10.1111/j.1440-1843.2006.00784.x
  18. Belda J, Leigh R, Parameswaran K, O'Byrne PM, Sears MR, Hargreave FE. Induced sputum cell counts in healthy adults. Am J Respir Crit Care Med 2000;161(2 Pt 1):475-478. https://doi.org/10.1164/ajrccm.161.2.9903097
  19. Hur GY, Ye YM, Yang E, Park HS. Serum potential biomarkers according to sputum inflammatory cell profiles in adult asthmatics. Korean J Intern Med 2020;35:988-997. https://doi.org/10.3904/kjim.2019.083
  20. Ntontsi P, Loukides S, Bakakos P, et al. Clinical, functional and inflammatory characteristics in patients with paucigranulocytic stable asthma: comparison with different sputum phenotypes. Allergy 2017;72:1761-1767. https://doi.org/10.1111/all.13184
  21. Bullone M, Carriero V, Bertolini F, et al. Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. Eur Respir J 2019;54:1900068.
  22. Chupp GL, Lee CG, Jarjour N, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 2007;357:2016-2027. https://doi.org/10.1056/NEJMoa073600
  23. Hinks TSC, Brown T, Lau LCK, et al. Multidimensional endo-typing in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol 2016;138:61-75. https://doi.org/10.1016/j.jaci.2015.11.020
  24. Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma : evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001;119:1329-1336. https://doi.org/10.1378/chest.119.5.1329
  25. Kuipers I, Louis R, Manise M, et al. Increased glutaredoxin-1 and decreased protein S-glutathionylation in sputum of asthmatics. Eur Respir J 2013;41:469-472. https://doi.org/10.1183/09031936.00115212
  26. Hastie AT, Moore WC, Meyers DA, et al. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 2010; 125:1028-1036.e13. https://doi.org/10.1016/j.jaci.2010.02.008
  27. Tliba O, Panettieri RA Jr. Paucigranulocytic asthma: uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 2019;143:1287-1294. https://doi.org/10.1016/j.jaci.2018.06.008
  28. Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 2021;9:1299-1312. https://doi.org/10.1016/S2213-2600(21)00226-5
  29. Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N Engl J Med 2021;385:1656-1668. https://doi.org/10.1056/NEJMoa2024257
  30. Kelsen SG, Agache IO, Soong W, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J Allergy Clin Immunol 2021;148:790-798. https://doi.org/10.1016/j.jaci.2021.03.044
  31. Crim C, Stone S, Millar V, et al. IL-33 receptor inhibition in subjects with uncontrolled asthma: a randomized, placebo-controlled trial. J Allergy Clin Immunol Glob 2022;1:198-208. https://doi.org/10.1016/j.jacig.2022.07.002
  32. Watz H, Uddin M, Pedersen F, et al. Effects of the CXCR2 antagonist AZD5069 on lung neutrophil recruitment in asthma. Pulm Pharmacol Ther 2017;45:121-123. https://doi.org/10.1016/j.pupt.2017.05.012
  33. O'Byrne PM, Metev H, Puu M, et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med 2016;4:797-806. https://doi.org/10.1016/S2213-2600(16)30227-2
  34. Djukanovic R, Harrison T, Johnston SL, et al. The effect of inhaled IFN-β on worsening of asthma symptoms caused by viral infections. a randomized trial. Am J Respir Crit Care Med 2014;190:145-154. https://doi.org/10.1164/rccm.201312-2235OC
  35. McCrae C, Olsson M, Gustafson P, et al. INEXAS: a phase 2 randomized trial of on-demand inhaled interferon beta-1a in severe asthmatics. Clin Exp Allergy 2021;51:273-283. https://doi.org/10.1111/cea.13765
  36. Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 2013;188:1294-1302. https://doi.org/10.1164/rccm.201212-2318OC
  37. Clinical Trials.gov. Study to assess the efficacy and safety of CJM112 in patients with inadequately controlled severe asthma [Internet]. Bethesda (MD): National Library of Medicine, c2017 [cited 2023 May 13]. Available from: https://clinicaltrials.gov/ct2/show/NCT03299686.
  38. Brightling CE, Nair P, Cousins DJ, Louis R, Singh D. Risankizumab in severe asthma - a phase 2a, placebo-controlled trial. N Engl J Med 2021;385:1669-1679. https://doi.org/10.1056/NEJMoa2030880
  39. Hernandez ML, Mills K, Almond M, et al. IL-1 receptor antagonist reduces endotoxin-induced airway inflammation in healthy volunteers. J Allergy Clin Immunol 2015;135:379-385. https://doi.org/10.1016/j.jaci.2014.07.039
  40. Kardas G, Panek M, Kuna P, Damianski P, Kupczyk M. Monoclonal antibodies in the management of asthma: Dead ends, current status and future perspectives. Front Immunol 2022;13:983852.
  41. Clinical Trials.gov. A phase 2a study to evaluate the effects of sirukumab in subjects with severe poorly controlled asthma [Internet]. Bethesda (MD): National Library of Medicine, c2016 [cited 2023 May 13]. Available from: https://clinicaltrials.gov/ct2/show/NCT02794519.
  42. Clinical Trials.gov. PrecISE (precision interventions for severe and/or exacerbation-prone asthma) network study [Internet]. Bethesda (MD): National Library of Medicine, c2019 [cited 2023 May 13]. Available from: https://clinicaltrials.gov/study/NCT04129931.
  43. Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006;354:697-708. https://doi.org/10.1056/NEJMoa050580
  44. Wenzel SE, Barnes PJ, Bleecker ER, et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 2009;179:549-558. https://doi.org/10.1164/rccm.200809-1512OC
  45. Huang CY, Chung CL, Hu TH, Chen JJ, Liu PF, Chen CL. Recent progress in TGF-β inhibitors for cancer therapy. Biomed Pharmacother 2021;134:111046.
  46. Sartiani L, Bartolucci G, Pallecchi M, Spinelli V, Cerbai E. Pharmacological basis of the antifibrotic effects of pirfenidone: Mechanistic insights from cardiac in-vitro and in-vivo models. Front Cardiovasc Med 2022;9:751499.
  47. Jin R, Xu J, Gao Q, et al. IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov 2020;6:33.
  48. Pelaia C, Pelaia G, Crimi C, et al. Tezepelumab: a potential new biological therapy for severe refractory asthma. Int J Mol Sci 2021;22:4369.
  49. Pham DL, Ban GY, Kim SH, et al. Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin Exp Allergy 2017;47:57-70. https://doi.org/10.1111/cea.12859
  50. Quoc QL, Cao TBT, Moon JY, et al. Contribution of monocyte and macrophage extracellular traps to neutrophilic airway inflammation in severe asthma. Allergol Int 2024;73:81-93. https://doi.org/10.1016/j.alit.2023.06.004
  51. Badi YE, Salcman B, Taylor A, et al. IL1RAP expression and the enrichment of IL-33 activation signatures in severe neutrophilic asthma. Allergy 2023;78:156-167. https://doi.org/10.1111/all.15487
  52. Chung KF. Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies. J Intern Med 2016;279:192-204. https://doi.org/10.1111/joim.12382
  53. Rahmawati SF, Te Velde M, Kerstjens HAM, Domling ASS, Groves MR, Gosens R. Pharmacological rationale for targeting IL-17 in asthma. Front Allergy 2021;2:694514.
  54. Li SF, Gong MJ, Zhao FR, et al. Type I interferons: distinct biological activities and current applications for viral infection. Cell Physiol Biochem 2018;51:2377-2396. https://doi.org/10.1159/000495897
  55. Bhakta NR, Christenson SA, Nerella S, et al. IFN-stimulated gene expression, type 2 inflammation, and endoplasmic reticulum stress in asthma. Am J Respir Crit Care Med 2018;197:313-324. https://doi.org/10.1164/rccm.201706-1070OC
  56. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 2015;135:626-635. https://doi.org/10.1016/j.jaci.2014.11.001
  57. Kim J, Chang Y, Bae B, et al. Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J Allergy Clin Immunol 2019;143:1769-1782.e11. https://doi.org/10.1016/j.jaci.2018.10.040
  58. Raundhal M, Morse C, Khare A, et al. High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest 2015;125:3037-3050. https://doi.org/10.1172/JCI80911
  59. Gauthier M, Chakraborty K, Oriss TB, et al. Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight 2017;2:e94580.
  60. Singhania A, Wallington JC, Smith CG, et al. Multitissue transcriptomics delineates the diversity of airway T cell functions in asthma. Am J Respir Cell Mol Biol 2018;58:261-270. https://doi.org/10.1165/rcmb.2017-0162OC
  61. Ostling J, van Geest M, Schofield JPR, et al. IL-17-high asthma with features of a psoriasis immunophenotype. J Allergy Clin Immunol 2019;144:1198-1213. https://doi.org/10.1016/j.jaci.2019.03.027
  62. Krishnamoorthy N, Douda DN, Bruggemann TR, et al. Neutrophil cytoplasts induce TH17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol 2018;3:eaao4747.
  63. Pelletier M, Maggi L, Micheletti A, et al. Evidence for a crosstalk between human neutrophils and Th17 cells. Blood 2010;115:335-343. https://doi.org/10.1182/blood-2009-04-216085
  64. Clinical Trials.gov. Efficacy and safety of BI 655066/ABBV-066 (Risankizumab) in patients with severe persistent asthma [Internet]. Bethesda (MD): National Library of Medicine, c2015 [cited 2023 May 13]. Available from: https://clinicaltrials.gov/ct2/show/NCT02443298.
  65. Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021;57:2000528. https://doi.org/10.1183/13993003.00528-2020
  66. Fricker M, Qin L, Sanchez-Ovando S, et al. An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy 2022;77:1204-1215. https://doi.org/10.1111/all.15087
  67. van der Veen TA, de Groot LES, Melgert BN. The different faces of the macrophage in asthma. Curr Opin Pulm Med 2020;26:62-68. https://doi.org/10.1097/MCP.0000000000000647
  68. Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med 2017;196:283-297. https://doi.org/10.1164/rccm.201609-1830OC
  69. Lachowicz-Scroggins ME, Dunican EM, Charbit AR, et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am J Respir Crit Care Med 2019;199:1076-1085. https://doi.org/10.1164/rccm.201810-1869OC
  70. Choi Y, Park H, Park HS, Kim YK. Extracellular vesicles, a key mediator to link environmental microbiota to airway immunity. Allergy Asthma Immunol Res 2017;9:101-106. https://doi.org/10.4168/aair.2017.9.2.101
  71. Choi Y, Lee Y, Park HS. Which factors associated with activated eosinophils contribute to the pathogenesis of aspirin-exacerbated respiratory disease? Allergy Asthma Immunol Res 2019;11:320-329. https://doi.org/10.4168/aair.2019.11.3.320
  72. Choi Y, Sim S, Park HS. Distinct functions of eosinophils in severe asthma with type 2 phenotype: clinical implications. Korean J Intern Med 2020;35:823-833. https://doi.org/10.3904/kjim.2020.022
  73. Choi Y, Park HS, Jee YK. Urine microbial extracellular vesicles can be potential and novel biomarkers for allergic diseases. Allergy Asthma Immunol Res 2021;13:5-7. https://doi.org/10.4168/aair.2021.13.1.5
  74. Lee DH, Park HK, Lee HR, et al. Immunoregulatory effects of Lactococcus lactis-derived extracellular vesicles in allergic asthma. Clin Transl Allergy 2022;12:e12138.
  75. Choi Y, Park HS, Kim YK. Bacterial extracellular vesicles: a candidate molecule for the diagnosis and treatment of allergic diseases. Allergy Asthma Immunol Res 2023;15:279-289. https://doi.org/10.4168/aair.2023.15.3.279
  76. Sim S, Lee DH, Kim KS, et al. Micrococcus luteus-derived extracellular vesicles attenuate neutrophilic asthma by regulating miRNAs in airway epithelial cells. Exp Mol Med 2023;55:196-204. https://doi.org/10.1038/s12276-022-00910-0
  77. Yokoyama A, Kohno N, Fujino S, et al. Circulating interleukin-6 levels in patients with bronchial asthma. Am J Respir Crit Care Med 1995;151:1354-1358. https://doi.org/10.1164/ajrccm.151.5.7735584
  78. Chu DK, Al-Garawi A, Llop-Guevara A, et al. Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin Immunol 2015;11:14.
  79. Peters MC, McGrath KW, Hawkins GA, et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med 2016;4:574-584. https://doi.org/10.1016/S2213-2600(16)30048-0
  80. Gubernatorova EO, Namakanova OA, Gorshkova EA, Medvedovskaya AD, Nedospasov SA, Drutskaya MS. Novel anti-cytokine strategies for prevention and treatment of respiratory allergic diseases. Front Immunol 2021;12:601842.
  81. Peters MC, Ringel L, Dyjack N, et al. A transcriptomic method to determine airway immune dysfunction in T2-high and T2-low asthma. Am J Respir Crit Care Med 2019;199:465-477. https://doi.org/10.1164/rccm.201807-1291OC
  82. Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: what's the difference? BioDrugs 2018;32:531-546. https://doi.org/10.1007/s40259-018-0320-3
  83. Thomas PS, Yates DH, Barnes PJ. Tumor necrosis factor-alpha increases airway responsiveness and sputum neutrophilia in normal human subjects. Am J Respir Crit Care Med 1995; 152:76-80. https://doi.org/10.1164/ajrccm.152.1.7599866
  84. Kramer EL, Mushaben EM, Pastura PA, et al. Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice. Am J Respir Cell Mol Biol 2009;41:415-425. https://doi.org/10.1165/rcmb.2008-0470OC
  85. Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol 2011;44:127-133. https://doi.org/10.1165/rcmb.2010-0027TR