DOI QR코드

DOI QR Code

Long term management of people with post-tuberculosis lung disease

  • Wan Seo (Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Hyung Woo Kim (Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Ju Sang Kim (Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Jinsoo Min (Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2023.09.19
  • Accepted : 2023.11.08
  • Published : 2024.01.01

Abstract

Post-tuberculosis lung disease (PTLD) is emerging as a significant area of global interest. As the number of patients surviving tuberculosis (TB) increases, the subsequent long-term repercussions have drawn increased attention due to their profound clinical and socioeconomic impacts. A primary obstacle to its comprehensive study has been its marked heterogeneity. The disease presents a spectrum of clinical manifestations which encompass tracheobronchial stenosis, bronchiectasis, granulomas with fibrosis, cavitation with associated aspergillosis, chronic pleural diseases, and small airway diseases-all persistent consequences of PTLD. The spectrum of symptoms a patient may experience varies based on the severity of the initial infection and the efficacy of the treatment received. As a result, the long-term management of PTLD necessitates a detailed and specific approach, addressing each manifestation individually-a tailored strategy. In the immediate aftermath (0-12 months after anti-TB chemotherapy), there should be an emphasis on monitoring for relapse, tracheobronchial stenosis, and smoking cessation. Subsequent management should focus on addressing hemoptysis, managing infection including aspergillosis, and TB-associated chronic obstructive pulmonary disease or restrictive lung function. There remains a vast expanse of knowledge to be discovered in PTLD. This review emphasizes the pressing need for comprehensive, consolidated guidelines for management of patients with PTLD.

Keywords

Acknowledgement

We extend our sincere thanks to Dr. Hyeong Jun Cho, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, for generously providing the photograph shown in Figure 8.

References

  1. Wordl Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022.
  2. Iseman MD. Tuberculosis therapy: past, present and future. Eur Respir J Suppl 2002;36:87s-94s. https://doi.org/10.1183/09031936.02.00309102
  3. Snider GL. Tuberculosis then and now: a personal perspective on the last 50 years. Ann Intern Med 1997;126:237-243. https://doi.org/10.7326/0003-4819-126-3-199702010-00011
  4. van Kampen SC, Wanner A, Edwards M, et al. International research and guidelines on post-tuberculosis chronic lung disorders: a systematic scoping review. BMJ Glob Health 2018;3:e000745.
  5. Allwood B, van der Zalm M, Makanda G, Mortimer K; Steering Committee of the First International Post-Tuberculosis Symposium. The long shadow post-tuberculosis. Lancet Infect Dis 2019;19:1170-1171. https://doi.org/10.1016/S1473-3099(19)30564-X
  6. Allwood BW, van der Zalm MM, Amaral AFS, et al. Post-tuberculosis lung health: perspectives from the First International Symposium. Int J Tuberc Lung Dis 2020;24:820-828. https://doi.org/10.5588/ijtld.20.0067
  7. Romanowski K, Baumann B, Basham CA, Ahmad Khan F, Fox GJ, Johnston JC. Long-term all-cause mortality in people treated for tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 2019;19:1129-1137. https://doi.org/10.1016/S1473-3099(19)30309-3
  8. Nightingale R, Carlin F, Meghji J, et al. Post-TB health and wellbeing. Int J Tuberc Lung Dis 2023;27:248-283. https://doi.org/10.5588/ijtld.22.0514
  9. Lambert ML, Hasker E, Van Deun A, Roberfroid D, Boelaert M, Van der Stuyft P. Recurrence in tuberculosis: relapse or reinfection? Lancet Infect Dis 2003;3:282-287. https://doi.org/10.1016/S1473-3099(03)00607-8
  10. Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 2018;27:170077.
  11. Choi H, Chalmers JD. Bronchiectasis exacerbation: a narrative review of causes, risk factors, management and prevention. Ann Transl Med 2023;11:25.
  12. Mondoni M, Repossi A, Carlucci P, Centanni S, Sotgiu G. Bronchoscopic techniques in the management of patients with tuberculosis. Int J Infect Dis 2017;64:27-37. https://doi.org/10.1016/j.ijid.2017.08.008
  13. Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax 2015;70:270-277. https://doi.org/10.1136/thoraxjnl-2014-206291
  14. Kathuria H, Hollingsworth HM, Vilvendhan R, Reardon C. Management of life-threatening hemoptysis. J Intensive Care 2020;8:23.
  15. Allwood BW, Byrne A, Meghji J, Rachow A, van der Zalm MM, Schoch OD. Post-tuberculosis lung disease: clinical review of an under-recognised global challenge. Respiration 2021;100:751-763. https://doi.org/10.1159/000512531
  16. Amaral AF, Coton S, Kato B, et al. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results. Eur Respir J 2015;46:1104-1112. https://doi.org/10.1183/13993003.02325-2014
  17. de Martino M, Lodi L, Galli L, Chiappini E. Immune response to mycobacterium tuberculosis: a narrative review. Front Pediatr 2019;7:350.
  18. Ulrichs T, Kaufmann SH. New insights into the function of granulomas in human tuberculosis. J Pathol 2006;208:261-269. https://doi.org/10.1002/path.1906
  19. Moreira AL, Tsenova L, Aman MH, et al. Mycobacterial antigens exacerbate disease manifestations in Mycobacterium tuberculosis-infected mice. Infect Immun 2002;70:2100-2107. https://doi.org/10.1128/IAI.70.4.2100-2107.2002
  20. Fiorenza G, Rateni L, Farroni MA, Bogue C, Dlugovitzky DG. TNF-alpha, TGF-beta and NO relationship in sera from tuberculosis (TB) patients of different severity. Immunol Lett 2005;98:45-48. https://doi.org/10.1016/j.imlet.2004.09.008
  21. Elkington P, Shiomi T, Breen R, et al. MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Invest 2011;121:1827-1833. https://doi.org/10.1172/JCI45666
  22. Shanmugasundaram K, Talwar A, Madan K, Bade G. Pulmonary functions and inflammatory biomarkers in post-pulmonary tuberculosis sequelae. Tuberc Respir Dis (Seoul) 2022;85:175-184. https://doi.org/10.4046/trd.2021.0127
  23. Menzies NA, Quaife M, Allwood BW, et al. Lifetime burden of disease due to incident tuberculosis: a global reappraisal including post-tuberculosis sequelae. Lancet Glob Health 2021;9:e1679-e1687. https://doi.org/10.1016/S2214-109X(21)00367-3
  24. Miller TL, Wilson FA, Pang JW, et al. Mortality hazard and survival after tuberculosis treatment. Am J Public Health 2015;105:930-937. https://doi.org/10.2105/AJPH.2014.302431
  25. Choi H, Han K, Jung JH, et al. Long-term mortality of tuberculosis survivors in Korea: a population-based longitudinal study. Clin Infect Dis 2023;76:e973-e981. https://doi.org/10.1093/cid/ciac411
  26. Long R, Maycher B, Dhar A, Manfreda J, Hershfield E, Anthonisen N. Pulmonary tuberculosis treated with directly observed therapy: serial changes in lung structure and function. Chest 1998;113:933-943. https://doi.org/10.1378/chest.113.4.933
  27. Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 2011;91:497-509. https://doi.org/10.1016/j.tube.2011.03.007
  28. Lee JH, Park SS, Lee DH, Shin DH, Yang SC, Yoo BM. Endobronchial tuberculosis. Clinical and bronchoscopic features in 121 cases. Chest 1992;102:990-994. https://doi.org/10.1378/chest.102.4.990
  29. Ip MS, So SY, Lam WK, Mok CK. Endobronchial tuberculosis revisited. Chest 1986;89:727-730. https://doi.org/10.1378/chest.89.5.727
  30. Shim YS. Endobronchial tuberculosis. Respirology 1996;1:95-106. https://doi.org/10.1111/j.1440-1843.1996.tb00017.x
  31. Hoheisel G, Chan BK, Chan CH, Chan KS, Teschler H, Costabel U. Endobronchial tuberculosis: diagnostic features and therapeutic outcome. Respir Med 1994;88:593-597. https://doi.org/10.1016/S0954-6111(05)80007-1
  32. Chung HS, Lee JH. Bronchoscopic assessment of the evolution of endobronchial tuberculosis. Chest 2000;117:385-392. https://doi.org/10.1378/chest.117.2.385
  33. Han SW, Lee DH, Park SS, Lee JH. Clinical study of endobronchial tuberculosis. Tuberc Respir Dis 1984;31:57-61. https://doi.org/10.4046/trd.1984.31.2.57
  34. Park IW, Choi BW, Hue SH. Prospective study of corticosteroid as an adjunct in the treatment of endobronchial tuberculosis in adults. Respirology 1997;2:275-281. https://doi.org/10.1111/j.1440-1843.1997.tb00089.x
  35. Bilton D. Update on non-cystic fibrosis bronchiectasis. Curr Opin Pulm Med 2008;14:595-599. https://doi.org/10.1097/MCP.0b013e328312ed8c
  36. Buscot M, Pottier H, Marquette CH, Leroy S. Phenotyping adults with non-cystic fibrosis bronchiectasis: a 10-year cohort study in a French regional university hospital center. Respiration 2016;92:1-8. https://doi.org/10.1159/000446923
  37. Aksamit TR, O'Donnell AE, Barker A, et al.; Bronchiectasis Research Registry Consortium. Adult patients with bronchiectasis: a first look at the US Bronchiectasis Research Registry. Chest 2017;151:982-992. https://doi.org/10.1016/j.chest.2016.10.055
  38. Yang B, Jang HJ, Chung SJ, et al. Factors associated with bronchiectasis in Korea: a national database study. Ann Transl Med 2020;8:1350.
  39. Lee H, Choi H, Chalmers JD, et al. Characteristics of bronchiectasis in Korea: First data from the Korean Multicentre Bronchiectasis Audit and Research Collaboration registry and comparison with other international registries. Respirology 2021;26:619-621. https://doi.org/10.1111/resp.14059
  40. Ko JM, Kim KJ, Park SH, Park HJ. Bronchiectasis in active tuberculosis. Acta Radiol 2013;54:412-417. https://doi.org/10.1177/0284185113475796
  41. Seo H, Cha SI, Park J, et al. Hemoptysis as the presenting manifestation of bronchiectasis-associated hospitalization in Korea. J Thorac Dis 2023;15:3636-3645. https://doi.org/10.21037/jtd-22-1541
  42. Fong I, Low TB, Yii A. Characterisation of the post-tuberculous phenotype of bronchiectasis: a real-world observational study. Chron Respir Dis 2022;19:14799731221098714.
  43. Kosar M, Kurt A, Keskin S, Keskin Z, Arslan H. Evaluation of effects of bronchiectasis on bronchial artery diameter with multidetector computed tomography. Acta Radiol 2014;55:171-178. https://doi.org/10.1177/0284185113494979
  44. Marquis KM, Raptis CA, Rajput MZ, et al. CT for evaluation of hemoptysis. Radiographics 2021;41:742-761. https://doi.org/10.1148/rg.2021200150
  45. Gai X, Allwood B, Sun Y. Post-tuberculosis lung disease and chronic obstructive pulmonary disease. Chin Med J (Engl) 2023;136:1923-1928. https://doi.org/10.1097/CM9.0000000000002771
  46. Guler R, Ozturk M, Sabeel S, et al. Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis. Front Immunol 2021;12:733853.
  47. Lin PL, Rodgers M, Smith L, et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 2009;77:4631-4642. https://doi.org/10.1128/IAI.00592-09
  48. Lin PL, Ford CB, Coleman MT, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 2014;20:75-79. https://doi.org/10.1038/nm.3412
  49. DiFazio RM, Mattila JT, Klein EC, et al. Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis. Fibrogenesis Tissue Repair 2016;9:6.
  50. Warsinske HC, DiFazio RM, Linderman JJ, Flynn JL, Kirschner DE. Identifying mechanisms driving formation of granuloma-associated fibrosis during Mycobacterium tuberculosis infection. J Theor Biol 2017;429:1-17. https://doi.org/10.1016/j.jtbi.2017.06.017
  51. Im JG, Itoh H, Shim YS, et al. Pulmonary tuberculosis: CT findings--early active disease and sequential change with antituberculous therapy. Radiology 1993;186:653-660. https://doi.org/10.1148/radiology.186.3.8430169
  52. Dannenberg AM. Pathogenesis of human pulmonary tuberculosis: insights from the rabbit model. Washington: ASM press, 2006.
  53. Urbanowski ME, Ordonez AA, Ruiz-Bedoya CA, Jain SK, Bishai WR. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect Dis 2020;20:e117-e128. https://doi.org/10.1016/S1473-3099(20)30148-1
  54. Canetti G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis 1965;92:687-703.
  55. Benator D, Bhattacharya M, Bozeman L, et al.; Tuberculosis Trials Consortium. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet 2002;360:528-534. https://doi.org/10.1016/S0140-6736(02)09742-8
  56. Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol 2014;12:159-167. https://doi.org/10.1038/nrmicro3200
  57. Moreno-Gamez S, Hill AL, Rosenbloom DI, Petrov DA, Nowak MA, Pennings PS. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc Natl Acad Sci U S A 2015;112:E2874-E2883. https://doi.org/10.1073/pnas.1424184112
  58. Segal BH. Aspergillosis. N Engl J Med 2009;360:1870-1884. https://doi.org/10.1056/NEJMra0808853
  59. Denning DW, Cadranel J, Beigelman-Aubry C, et al.; European Society for Clinical Microbiology and Infectious Diseases and European Respiratory Society. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J 2016;47:45-68. https://doi.org/10.1183/13993003.00583-2015
  60. Denning DW, Follansbee SE, Scolaro M, Norris S, Edelstein H, Stevens DA. Pulmonary aspergillosis in the acquired immunodeficiency syndrome. N Engl J Med 1991;324:654-662. https://doi.org/10.1056/NEJM199103073241003
  61. Kim SY, Lee KS, Han J, et al. Semiinvasive pulmonary aspergillosis: CT and pathologic findings in six patients. AJR Am J Roentgenol 2000;174:795-798. https://doi.org/10.2214/ajr.174.3.1740795
  62. Yoo SS, Kwon JS, Kang YR, et al. The clinical characteristics and outcomes of short-term treatment in patients with recurrent pulmonary tuberculosis. Tuberc Respir Dis 2008;64:341-346. https://doi.org/10.4046/trd.2008.64.5.341
  63. Chan-Yeung M, Noertjojo K, Chan SL, Tam CM. Sex differences in tuberculosis in Hong Kong. Int J Tuberc Lung Dis 2002;6:11-18.
  64. Johnson JL, Okwera A, Nsubuga P, et al. Efficacy of an unsupervised 8-month rifampicin-containing regimen for the treatment of pulmonary tuberculosis in HIV-infected adults. Uganda-Case Western Reserve University Research Collaboration. Int J Tuberc Lung Dis 2000;4:1032-1040.
  65. Mallory KF, Churchyard GJ, Kleinschmidt I, De Cock KM, Corbett EL. The impact of HIV infection on recurrence of tuberculosis in South African gold miners. Int J Tuberc Lung Dis 2000;4:455-462.
  66. Mitchison DA, Nunn AJ. Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis 1986;133:423-430.
  67. Segarra F, Sherman DS. Relapses in pulmonary tuberculosis. Dis Chest 1967;51:59-63. https://doi.org/10.1378/chest.51.1.59
  68. Thomas A, Gopi PG, Santha T, et al. Predictors of relapse among pulmonary tuberculosis patients treated in a DOTS programme in South India. Int J Tuberc Lung Dis 2005;9:556-561.
  69. Nunn AJ, Phillips PP, Mitchison DA. Timing of relapse in short-course chemotherapy trials for tuberculosis. Int J Tuberc Lung Dis 2010;14:241-242.
  70. Watanabe Y, Murakami S, Oda M, et al. Treatment of bronchial stricture due to endobronchial tuberculosis. World J Surg 1997;21:480-487. https://doi.org/10.1007/PL00012273
  71. Iwamoto Y, Miyazawa T, Kurimoto N, et al. Interventional bronchoscopy in the management of airway stenosis due to tracheobronchial tuberculosis. Chest 2004;126:1344-1352. https://doi.org/10.1378/chest.126.4.1344
  72. Lim SY, Park HK, Jeon K, et al. Factors predicting outcome following airway stenting for post-tuberculosis tracheobronchial stenosis. Respirology 2011;16:959-964. https://doi.org/10.1111/j.1440-1843.2011.01998.x
  73. Cohen MD, Weber TR, Rao CC. Balloon dilatation of tracheal and bronchial stenosis. AJR Am J Roentgenol 1984;142:477-478. https://doi.org/10.2214/ajr.142.3.477
  74. Kim H. Rigid bronchoscopy for post-tuberculosis tracheobronchial stenosis. Tuberc Respir Dis (Seoul) 2023;86:245-250. https://doi.org/10.4046/trd.2023.0017
  75. Chung FT, Chen HC, Chou CL, et al. An outcome analysis of self-expandable metallic stents in central airway obstruction: a cohort study. J Cardiothorac Surg 2011;6:46.
  76. Dumon JF, Cavaliere S, Diaz-Jimenez JP, et al. Seven-year experience with the dumon prosthesis. J Bronchol 1996;3:6-10. https://doi.org/10.1097/00128594-199601000-00003
  77. Lee KW, Im JG, Han JK, Kim TK, Park JH, Yeon KM. Tuberculous stenosis of the left main bronchus: results of treatment with balloons and metallic stents. J Vasc Interv Radiol 1999;10:352-358. https://doi.org/10.1016/S1051-0443(99)70042-4
  78. Low SY, Hsu A, Eng P. Interventional bronchoscopy for tuberculous tracheobronchial stenosis. Eur Respir J 2004;24:345-347. https://doi.org/10.1183/09031936.04.00003604
  79. Ryu YJ, Kim H, Yu CM, Choi JC, Kwon YS, Kwon OJ. Use of silicone stents for the management of post-tuberculosis tracheobronchial stenosis. Eur Respir J 2006;28:1029-1035. https://doi.org/10.1183/09031936.00020906
  80. Verma A, Park HY, Lim SY, et al. Posttuberculosis tracheobronchial stenosis: use of CT to optimize the time of silicone stent removal. Radiology 2012;263:562-568. https://doi.org/10.1148/radiol.11111463
  81. Yoon W, Kim JK, Kim YH, Chung TW, Kang HK. Bronchial and nonbronchial systemic artery embolization for life-threatening hemoptysis: a comprehensive review. Radiographics 2002;22:1395-1409. https://doi.org/10.1148/rg.226015180
  82. Ittrich H, Bockhorn M, Klose H, Simon M. The diagnosis and treatment of hemoptysis. Dtsch Arztebl Int 2017;114:371-381. https://doi.org/10.3238/arztebl.2017.0371
  83. Walker CM, Rosado-de-Christenson ML, Martinez-Jimenez S, Kunin JR, Wible BC. Bronchial arteries: anatomy, function, hypertrophy, and anomalies. Radiographics 2015;35:32-49. https://doi.org/10.1148/rg.351140089
  84. Prutsky G, Domecq JP, Salazar CA, Accinelli R. Antifibrinolytic therapy to reduce haemoptysis from any cause. Cochrane Database Syst Rev 2016;11:CD008711.
  85. Bellam BL, Dhibar DP, Suri V, et al. Efficacy of tranexamic acid in haemoptysis: a randomized, controlled pilot study. Pulm Pharmacol Ther 2016;40:80-83. https://doi.org/10.1016/j.pupt.2016.07.006
  86. Wand O, Guber E, Guber A, Epstein Shochet G, Israeli-Shani L, Shitrit D. Inhaled tranexamic acid for hemoptysis treatment: a randomized controlled trial. Chest 2018;154:1379-1384. https://doi.org/10.1016/j.chest.2018.09.026
  87. Vaidya S, Tozer KR, Chen J. An overview of embolic agents. Semin Intervent Radiol 2008;25:204-215. https://doi.org/10.1055/s-0028-1085930
  88. Ittrich H, Klose H, Adam G. Radiologic management of haemoptysis: diagnostic and interventional bronchial arterial embolisation. Rofo 2015;187:248-259.
  89. Chalmers JD, Goeminne P, Aliberti S, et al. The bronchiectasis severity index. An international derivation and validation study. Am J Respir Crit Care Med 2014;189:576-585. https://doi.org/10.1164/rccm.201309-1575OC
  90. Martinez-Garcia MA, de Gracia J, Vendrell Relat M, et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur Respir J 2014;43:1357-1367. https://doi.org/10.1183/09031936.00026313
  91. Choi H, Lee H, Ra SW, et al. Developing a diagnostic bundle for bronchiectasis in South Korea: a modified delphi consensus study. Tuberc Respir Dis (Seoul) 2022;85:56-66. https://doi.org/10.4046/trd.2021.0136
  92. Araujo D, Shteinberg M, Aliberti S, et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur Respir J 2018;51:1701953.
  93. Dicker AJ, Lonergan M, Keir HR, et al. The sputum microbiome and clinical outcomes in patients with bronchiectasis: a prospective observational study. Lancet Respir Med 2021;9:885-896. https://doi.org/10.1016/S2213-2600(20)30557-9
  94. Murray MP, Turnbull K, Macquarrie S, Hill AT. Assessing response to treatment of exacerbations of bronchiectasis in adults. Eur Respir J 2009;33:312-318. https://doi.org/10.1183/09031936.00122508
  95. Bedi P, Cartlidge MK, Zhang Y, et al. Feasibility of shortening intravenous antibiotic therapy for bronchiectasis based on bacterial load: a proof-of-concept randomised controlled trial. Eur Respir J 2021;58:2004388.
  96. Choi JY. Exacerbation prevention and management of bronchiectasis. Tuberc Respir Dis (Seoul) 2023;86:183-195. https://doi.org/10.4046/trd.2023.0010
  97. Kempker RR, Vashakidze S, Solomonia N, Dzidzikashvili N, Blumberg HM. Surgical treatment of drug-resistant tuberculosis. Lancet Infect Dis 2012;12:157-166. https://doi.org/10.1016/S1473-3099(11)70244-4
  98. World Health Oranization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019.
  99. Cadranel J, Philippe B, Hennequin C, et al. Voriconazole for chronic pulmonary aspergillosis: a prospective multicenter trial. Eur J Clin Microbiol Infect Dis 2012;31:3231-3239. https://doi.org/10.1007/s10096-012-1690-y
  100. Judson MA, Stevens DA. The treatment of pulmonary aspergilloma. Curr Opin Investig Drugs 2001;2:1375-1377.
  101. Camuset J, Nunes H, Dombret MC, et al. Treatment of chronic pulmonary aspergillosis by voriconazole in nonimmunocompromised patients. Chest 2007;131:1435-1441. https://doi.org/10.1378/chest.06-2441
  102. De Beule K, De Doncker P, Cauwenbergh G, et al. The treatment of aspergillosis and aspergilloma with itraconazole, clinical results of an open international study (1982-1987). Mycoses 1988;31:476-485. https://doi.org/10.1111/j.1439-0507.1988.tb03653.x
  103. Dupont B. Itraconazole therapy in aspergillosis: study in 49 patients. J Am Acad Dermatol 1990;23(3 Pt 2):607-614. https://doi.org/10.1016/0190-9622(90)70263-H
  104. Jain LR, Denning DW. The efficacy and tolerability of voriconazole in the treatment of chronic cavitary pulmonary aspergillosis. J Infect 2006;52:e133-e137. https://doi.org/10.1016/j.jinf.2005.08.022
  105. Schweer KE, Wittersheim M, Bangard C, Frank KF, Cornely OA. [Chronic pulmonary Aspergillosis. Four exemplary clinical cases and literature overview]. Dtsch Med Wochenschr 2014;139:2242-2247. German. https://doi.org/10.1055/s-0034-1370275
  106. Quan DH, Kwong AJ, Hansbro PM, Britton WJ. No smoke without fire: the impact of cigarette smoking on the immune control of tuberculosis. Eur Respir Rev 2022;31:210252.
  107. Xing Z, Sun T, Janssens JP, et al. Airflow obstruction and small airway dysfunction following pulmonary tuberculosis: a cross-sectional survey. Thorax 2023;78:274-280. https://doi.org/10.1136/thoraxjnl-2021-218345
  108. Nightingale R, Chinoko B, Lesosky M, et al. Respiratory symptoms and lung function in patients treated for pulmonary tuberculosis in Malawi: a prospective cohort study. Thorax 2022;77:1131-1139. https://doi.org/10.1136/thoraxjnl-2021-217190
  109. Leung CC, Yew WW, Chan CK, et al. Smoking adversely affects treatment response, outcome and relapse in tuberculosis. Eur Respir J 2015;45:738-745. https://doi.org/10.1183/09031936.00114214
  110. Siddharthan T, Gupte A, Barnes PJ. Chronic obstructive pulmonary disease endotypes in low- and middle-income country settings: precision medicine for all. Am J Respir Crit Care Med 2020;202:171-172. https://doi.org/10.1164/rccm.202001-0165ED
  111. Stolz D, Mkorombindo T, Schumann DM, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022;400:921-972. https://doi.org/10.1016/S0140-6736(22)01273-9
  112. Kim CJ, Yoon HK, Park MJ, et al. Inhaled indacaterol for the treatment of COPD patients with destroyed lung by tuberculosis and moderate-to-severe airflow limitation: results from the randomized INFINITY study. Int J Chron Obstruct Pulmon Dis 2017;12:1589-1596. https://doi.org/10.2147/COPD.S128750
  113. Yum HK, Park IN. Effect of inhaled tiotropium on spirometric parameters in patients with tuberculous destroyed lung. Tuberc Respir Dis (Seoul) 2014;77:167-171. https://doi.org/10.4046/trd.2014.77.4.167
  114. Miravitlles M, Auladell-Rispau A, Monteagudo M, et al. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur Respir Rev 2021;30:210075.
  115. Jo YS. Long-term outcome of chronic obstructive pulmonary disease: a review. Tuberc Respir Dis (Seoul) 2022;85:289-301. https://doi.org/10.4046/trd.2022.0074
  116. Huang TM, Kuo KC, Wang YH, et al.; On the behalf of Taiwan Clinical Trial Consortium for Respiratory Diseases (TCORE). Risk of active tuberculosis among COPD patients treated with fixed combinations of long-acting beta2 agonists and inhaled corticosteroids. BMC Infect Dis 2020;20:706.
  117. Spruit MA. Pulmonary rehabilitation. Eur Respir Rev 2014;23:55-63. https://doi.org/10.1183/09059180.00008013
  118. Arnold MT, Dolezal BA, Cooper CB. Pulmonary rehabilitation for chronic obstructive pulmonary disease: highly effective but often overlooked. Tuberc Respir Dis (Seoul) 2020;83:257-267. https://doi.org/10.4046/trd.2020.0064
  119. Vogiatzis I, Rochester CL, Spruit MA, Troosters T, Clini EM; American Thoracic Society/European Respiratory Society Task Force on Policy in Pulmonary Rehabilitation. Increasing implementation and delivery of pulmonary rehabilitation: key messages from the new ATS/ERS policy statement. Eur Respir J 2016;47:1336-1341. https://doi.org/10.1183/13993003.02151-2015
  120. Migliori GB, Marx FM, Ambrosino N, et al. Clinical standards for the assessment, management and rehabilitation of post-TB lung disease. Int J Tuberc Lung Dis 2021;25:797-813. https://doi.org/10.5588/ijtld.21.0425
  121. Tsuboi T, Ohi M, Chin K, et al. Ventilatory support during exercise in patients with pulmonary tuberculosis sequelae. Chest 1997;112:1000-1007. https://doi.org/10.1378/chest.112.4.1000
  122. Ando M, Mori A, Esaki H, et al. The effect of pulmonary rehabilitation in patients with post-tuberculosis lung disorder. Chest 2003;123:1988-1995. https://doi.org/10.1378/chest.123.6.1988
  123. Singh SK, Naaraayan A, Acharya P, Menon B, Bansal V, Jesmajian S. Pulmonary rehabilitation in patients with chronic lung impairment from pulmonary tuberculosis. Cureus 2018;10:e3664.
  124. Visca D, Zampogna E, Sotgiu G, et al. Pulmonary rehabilitation is effective in patients with tuberculosis pulmonary sequelae. Eur Respir J 2019;53:1802184.
  125. Budweiser S, Moertl M, Jorres RA, Windisch W, Heinemann F, Pfeifer M. Respiratory muscle training in restrictive thoracic disease: a randomized controlled trial. Arch Phys Med Rehabil 2006;87:1559-65. https://doi.org/10.1016/j.apmr.2006.08.340
  126. Munoz-Torrico M, Rendon A, Centis R, et al. Is there a rationale for pulmonary rehabilitation following successful chemotherapy for tuberculosis? J Bras Pneumol 2016;42:374-385. https://doi.org/10.1590/S1806-37562016000000226
  127. Polverino E, Goeminne PC, McDonnell MJ, et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J 2017;50:1700629.
  128. Alene KA, Clements ACA, McBryde ES, et al. Mental health disorders, social stressors, and health-related quality of life in patients with multidrug-resistant tuberculosis: a systematic review and meta-analysis. J Infect 2018;77:357-367. https://doi.org/10.1016/j.jinf.2018.07.007
  129. Alipanah N, Jarlsberg L, Miller C, et al. Adherence interventions and outcomes of tuberculosis treatment: a systematic review and meta-analysis of trials and observational studies. PLoS Med 2018;15:e1002595.
  130. Cederholm T, Jensen GL, Correia MITD, et al.; GLIM Core Leadership Committee; GLIM Working Group. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. Clin Nutr 2019;38:1-9. https://doi.org/10.1016/j.clnu.2018.08.002