DOI QR코드

DOI QR Code

Using Artificial Intelligence Software for Diagnosing Emphysema and Interstitial Lung Disease

폐기종 및 간질성 폐질환: 인공지능 소프트웨어 사용 경험

  • Sang Hyun Paik (Department of Chest, Korea Teleradiology Reading Center) ;
  • Gong Yong Jin (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University and Medical School)
  • 백상현 (한국영상의원 흉부 분야) ;
  • 진공용 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원, 영상의학과)
  • Received : 2024.04.11
  • Accepted : 2024.07.18
  • Published : 2024.07.01

Abstract

Researchers have developed various algorithms utilizing artificial intelligence (AI) to automatically and objectively diagnose patterns and extent of pulmonary emphysema or interstitial lung diseases on chest CT scans. Studies show that AI-based quantification of emphysema on chest CT scans reveals a connection between an increase in the relative percentage of emphysema and a decline in lung function. Notably, quantifying centrilobular emphysema has proven helpful in predicting clinical symptoms or mortality rates of chronic obstructive pulmonary disease. In the context of interstitial lung diseases, AI can classify the usual interstitial pneumonia pattern on CT scans into categories like normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation. This classification accuracy is comparable to chest radiologists (70%-80%). However, the results generated by AI are influenced by factors such as scan parameters, reconstruction algorithms, radiation doses, and the training data used to develop the AI. These limitations currently restrict the widespread adoption of AI for quantifying pulmonary emphysema and interstitial lung diseases in daily clinical practice. This paper will showcase the authors' experience using AI for diagnosing and quantifying emphysema and interstitial lung diseases through case studies. We will primarily focus on the advantages and limitations of AI for these two diseases.

흉부 CT상 폐기종이나 간질성 폐질환의 형태나 범위를 인공지능을 이용하여 자동적으로 객관적으로 진단하는 다양한 알고리즘을 개발되고, 이를 증명하는 연구들이 진행되어 왔다. 흉부 CT상 인공지능을 이용한 폐기종 정량화 연구들을 보면 CT상 폐기종의 상대적인 양이 증가와 폐 기능의 악화와 연관이 있으며, 특히 중심성 폐기종을 중심으로 정량화를 하는 것이 임상 증상이나 만성폐쇄성 폐질환의 사망률을 예측하는 데 도움이 된다고 보고하고 있다. 또한, 간질성 폐질환에서는 인공지능이 CT상 통상성 간질성 폐렴의 형태를 정상, 간유리 음영, 망상형 음영, 벌집 모양, 폐기종, 경화로 분류를 할 수 있고, 인공지능이 흉부영상의학과 전문의와 비슷한 정도로 통상성 간질성 폐렴을 진단(70%-80%) 할 수 있다고 보고했다. 그러나 인공지능의 결과들이 흉부 CT의 스캔 변수들, 재구성 알고리즘, 방사선 선량, 개발된 인공지능 훈련 데이터에 의해 영향을 받으며, 이러한 이유로 아직까지 흉부 CT상 폐기종과 간질성 폐질환의 진단과 정량화는 실제로 일상 업무에서 제한적으로 사용되고 있다. 이 논문에서는 폐기종과 간질성 폐질환의 진단과 정량화를 위해서 인공지능을 사용하고 있는 저자들의 경험을 증례로 소개를 하고, 이 두 질환의 인공지능의 효용성과 제한점에 대해서 언급하고자 한다.

Keywords

References

  1. El Kaddouri B, Strand MJ, Baraghoshi D, Humphries SM, Charbonnier JP, van Rikxoort EM, et al. Fleischner society visual emphysema CT patterns help predict progression of emphysema in current and former smokers: results from the COPDGene study. Radiology 2021;298:441-449 https://doi.org/10.1148/radiol.2020200563
  2. Grenier PA. Deep learning assessment of emphysema progression at CT predicts outcomes. Radiology 2022;304:680-682 https://doi.org/10.1148/radiol.220627
  3. Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, et al. Deep learning enables automatic classification of emphysema pattern at CT. Radiology 2020;294:434-444 https://doi.org/10.1148/radiol.2019191022
  4. Dack E, Christe A, Fontanellaz M, Brigato L, Heverhagen JT, Peters AA, et al. Artificial intelligence and interstitial lung disease: diagnosis and prognosis. Invest Radiol 2023;58:602-609 https://doi.org/10.1097/RLI.0000000000000974
  5. Oh AS, Lynch DA, Swigris JJ, Baraghoshi D, Dyer DS, Hale VA, et al. Deep learning-based fibrosis extent on computed tomography predicts outcome of fibrosing interstitial lung disease independent of visually assessed computed tomography pattern. Ann Am Thorac Soc 2024;21:218-227 https://doi.org/10.1513/AnnalsATS.202301-084OC
  6. Al Wachami N, Guennouni M, Iderdar Y, Boumendil K, Arraji M, Mourajid Y, et al. Estimating the global prevalence of chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMC Public Health 2024;24:297
  7. Martini K, Frauenfelder T. Advances in imaging for lung emphysema. Ann Transl Med 2020;8:1467
  8. Celli BR, MacNee W; ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004;23:932-946 https://doi.org/10.1183/09031936.04.00014304
  9. Lynch DA, Moore CM, Wilson C, Nevrekar D, Jennermann T, Humphries SM, et al. CT-based visual classification of emphysema: association with mortality in the COPDGene study. Radiology 2018;288:859-866 https://doi.org/10.1148/radiol.2018172294
  10. Sileikiene V, Urbonas M, Mataciunas M, Norkuniene J. Relationships between pulmonary function test parameters and quantitative computed tomography measurements of emphysema in subjects with chronic obstructive pulmonary disease. Acta Med Litu 2017;24:209-218
  11. deSouza NM, Achten E, Alberich-Bayarri A, Bamberg F, Boellaard R, Clement O, et al. Validated imaging biomarkers as decision-making tools in clinical trials and routine practice: current status and recommendations from the EIBALL* subcommittee of the European Society of Radiology (ESR). Insights Imaging 2019;10:87
  12. Messerli M, Ottilinger T, Warschkow R, Leschka S, Alkadhi H, Wildermuth S, et al. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT. Eur J Radiol 2017;91:1-9 https://doi.org/10.1016/j.ejrad.2017.03.003
  13. Smith BM, Austin JH, Newell JD Jr, D'Souza BM, Rozenshtein A, Hoffman EA, et al. Pulmonary emphysema subtypes on computed tomography: the MESA COPD study. Am J Med 2014;127:94.e7-94.e23 https://doi.org/10.1016/j.amjmed.2013.09.020
  14. Lynch DA, Austin JH, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner society. Radiology 2015;277:192-205 https://doi.org/10.1148/radiol.2015141579
  15. Lee KS, Han J, Wada N, Hata A, Lee HY, Yi C, et al. Imaging of pulmonary fibrosis: an update, from the AJR special series on imaging of fibrosis. AJR Am J Roentgenol 2024;222:e2329119
  16. Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner society white paper. Lancet Respir Med 2018;6:138-153 https://doi.org/10.1016/S2213-2600(17)30433-2
  17. Byon JH, Jin GY, Han YM, Choi EJ, Chae KJ, Park EH. Quantitative CT analysis based on smoking habits and chronic obstructive pulmonary disease in patients with normal chest CT. J Korean Soc Radiol 2023;84:900-910 https://doi.org/10.3348/jksr.2022.0130
  18. Chae KJ, Lim S, Seo JB, Hwang HJ, Choi H, Lynch D, et al. Interstitial lung abnormalities at CT in the Korean national lung cancer screening program: prevalence and deep learning-based texture analysis. Radiology 2023;307:e222828
  19. Hida T, Nishino M, Hino T, Lu J, Putman RK, Gudmundsson EF, et al. Traction bronchiectasis/bronchiolectasis is associated with interstitial lung abnormality mortality. Eur J Radiol 2020;129:109073
  20. Walsh SLF, De Backer J, Prosch H, Langs G, Calandriello L, Cottin V, et al. Towards the adoption of quantitative computed tomography in the management of interstitial lung disease. Eur Respir Rev 2024;33:230055
  21. Soffer S, Morgenthau AS, Shimon O, Barash Y, Konen E, Glicksberg BS, et al. Artificial intelligence for interstitial lung disease analysis on chest computed tomography: a systematic review. Acad Radiol 2022;29(Suppl 2):S226-S235 https://doi.org/10.1016/j.acra.2021.05.014
  22. Huang S, Lee F, Miao R, Si Q, Lu C, Chen Q. A deep convolutional neural network architecture for interstitial lung disease pattern classification. Med Biol Eng Comput 2020;58:725-737 https://doi.org/10.1007/s11517-019-02111-w
  23. Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med 2018;6:837-845 https://doi.org/10.1016/S2213-2600(18)30286-8
  24. Christe A, Peters AA, Drakopoulos D, Heverhagen JT, Geiser T, Stathopoulou T, et al. Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT images. Invest Radiol 2019;54:627-632 https://doi.org/10.1097/RLI.0000000000000574
  25. Lancaster L, Goldin J, Trampisch M, Kim GH, Ilowite J, Homik L, et al. Effects of nintedanib on quantitative lung fibrosis score in idiopathic pulmonary fibrosis. Open Respir Med J 2020;14:22-31 https://doi.org/10.2174/1874306402014010022