DOI QR코드

DOI QR Code

Ship Dynamics Modeling Based on Multivariate Identification by Linear Combination of Principal Components

주성분의 선형 결합을 통한 다변수 식별에 기반한 선박 조종 운동 모델 개발

  • Dong-Hwan Kim (Research Institute of Future Mobility System, Chungnam National University) ;
  • Minchang Kim (Department of Autonomous Vehicle System Engineering, Chungnam National University) ;
  • Seungbeom Lee (Department of Autonomous Vehicle System Engineering, Chungnam National University) ;
  • Jeonghwa Seo (Department of Autonomous Vehicle System Engineering, Chungnam National University)
  • 김동환 (충남대학교 미래모빌리티시스템연구소) ;
  • 김민창 (충남대학교 자율운항시스템공학과) ;
  • 이승범 (충남대학교 자율운항시스템공학과) ;
  • 서정화 (충남대학교 자율운항시스템공학과)
  • Received : 2024.04.26
  • Accepted : 2024.06.19
  • Published : 2024.08.20

Abstract

The present study suggests a data-driven multivariate identification method based on principal component analysis and shows an application to ship dynamics modeling in maneuver. A reduced order model of ship dynamics is built by linear combination of three principal components acquired from large angle zigzag maneuver test. For a given kinematic state with three variables, a proper span is found by least square method, therefore accompanying hydrodynamic force and moment is determined. Suggested dynamics model correctly estimates hydrodynamic force and moment, thus it showed good agreement in maneuver simulation with that of conventional ship dynamics model obtained by system identification of captive model tests.

Keywords

Acknowledgement

본 연구는 한국연구재단 지원의 '우수신진연구(NRF-2021R1C1C1014206)'사업으로 수행된 연구임.

References

  1. Araki, M., Sadat-Hosseini, H., Sanada, Y., Tanimoto, K., Umeda, N. and Stern, F., 2012. Estimating maneuvering coefficients using system identification methods with experimental, system-based and CFD free-running trial data. Ocean Engineering, 51, pp.63-84. https://doi.org/10.1016/j.oceaneng.2012.05.001
  2. Bishop, C.M., 2006. Pattern recognition and machine learning. Springer Nature.
  3. Bonci, M., Viviani, M., Broglia, R. and Dubbioso, G., 2015. Method for estimating parameters of practical ship manoeuvring models based on the combination of RANSE computations and system identification. Applied Ocean Research, 52, pp.274-294. https://doi.org/10.1016/j.apor.2015.06.005
  4. Brunton, S.L. and Kutz, J.N., 2019. Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press.
  5. Chillcce, G. and el Moctar, O., 2023. Data-driven system identification of hydrodynamic maneuvering coefficients from free-running tests. Physics of Fluids, 35(5), Article No.057122
  6. Jian, C., Jiayuan, Z., Feng, X., Jianchuan, Y., Zaojian, Z., Hao, Y., Tao, X. and Luchun, Y., 2015. Parametric estimation of ship maneuvering motion with integral sample structure for identification. Applied Ocean Research, 52, pp.212-221. https://doi.org/10.1016/j.apor.2015.06.007
  7. Kim, D., Kim, M., Lee, S. and J, Seo., 2024. A study on 4DOF ship dynamics in maneuver by principal component analysis. Journal of the Society of Naval Architects of Korea, 61(1), pp.29-44.
  8. Lever, J., Krzywinski, M. and Altman, N., 2017. Points of significance: principal component analysis. Nature methods, 14(7), pp.641-643. https://doi.org/10.1038/nmeth.4346
  9. Lewandowski, E.M., 2004. The dynamics of marine craft: maneuvering and seakeeping. World scientific Publishing CO. Pte. Ltd.
  10. Liu, S.Y., Ouyang, Z.L., Zhou, X. and Zou, Z.J., 2023. Black-box modeling of ship maneuvering motion based on Gaussian progress regression optimized by particle swarm optimization. International Journal of Offshore and Polar Engineering, 33(4), pp.337-345.
  11. Lou, J., Wang, H., Wang, J., Cai, Q. and Yi, H., 2022. Deep learning method for 3-DOF motion prediction of unmanned surface vehicles based on real sea maneuverability test. Ocean Engineering, 250, Article No.111015.
  12. Luo, W. and Li, X., 2017. Measures to diminish the parameter drift in the modeling of ship manoeuvring using system identification. Applied Ocean Research, 67, pp.9-20. https://doi.org/10.1016/j.apor.2017.06.008
  13. Ouyang, Z.L., Zou, Z.J. and Zou, L., 2023a. Adaptive hybrid-kernel function based Gaussian process regression for nonparametric modeling of ship maneuvering motion. Ocean Engineering, 268, Article No.113373.
  14. Ouyang, Z.L., Chen, G. and Zou, Z.J., 2023b. Identification modeling of ship maneuvering motion based on local Gaussian process regression. Ocean Engineering, 267, Article No.113251.
  15. Sutulo, S. and Soares, C.G., 2014. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests. Ocean Engineering, 79, pp.10-25. https://doi.org/10.1016/j.oceaneng.2014.01.007
  16. Wakita, K., Maki, A., Umeda, N., Miyauchi, Y., Shimoji, T., RAchman, D.M. and Akimoto, Y., 2022. On neural network identification for low-speed ship maneuvering model. Journal of Marine Science and Technology, 22, pp.772-785. https://doi.org/10.1007/s00773-021-00867-1
  17. Wang, Z., Zou, Z. and Soares, C.G., 2019. Identification of ship manoeuvring motion based on nu-support vector machine. Ocean Engineering, 183, pp.270-281. https://doi.org/10.1016/j.oceaneng.2019.04.085
  18. Wang, T., Li, G., Hatledal, L.I., Skulstad, R., Æsoy, V. and Zhang, H., 2022. Incorporating approximate dynamics into data-driven calibrator: A representative model for ship maneuvering prediction. IEEE Transactions on Industrial Informatics, 18(3), pp.1781-1789. https://doi.org/10.1109/TII.2021.3088404
  19. Xue, Y., Liu, Y., Ji, C. and Xue, G., 2020. Hydrodynamic parameter identification for ship manoeuvring mathematical models using a Bayesian approach. Ocean Engineering, 195, Article No.106612.
  20. Yasukawa, H. and Yoshimura, Y., 2015. Introduction of MMG standard method for ship maneuvering predictions. Journal of Marine Science and Technology, 22, pp.37-52. https://doi.org/10.1007/s00773-014-0293-y
  21. Zhang, X.G. and Zou, Z.J., 2011. Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression. Journal of hydrodynamics, 23(3), pp.353-360. https://doi.org/10.1016/S1001-6058(10)60123-0