DOI QR코드

DOI QR Code

Effects of extracellular vesicles (EVs) from uterine fluid during estrus and diestrus on porcine embryonic development

  • Shuntaro Miura (Department of Materials Science and Bioengineering, Nagaoka University of Technology) ;
  • Heejae Kang (College of Veterinary Medicine, Chungnam National University) ;
  • Seonggyu Bang (College of Veterinary Medicine, Chungnam National University) ;
  • Ayeong Han (College of Veterinary Medicine, Chungnam National University) ;
  • Islam M. Saadeldin (College of Veterinary Medicine, Chungnam National University) ;
  • Sanghoon Lee (College of Veterinary Medicine, Chungnam National University) ;
  • Koichi Takimoto (Department of Materials Science and Bioengineering, Nagaoka University of Technology) ;
  • Jongki Cho (College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
  • Received : 2024.06.02
  • Accepted : 2024.06.14
  • Published : 2024.06.30

Abstract

Background: Porcine embryonic development is widely utilized in the medical industry. However, the blastocyst development rate in vitro is lower compared to in vivo. To address this issue, various supplements are employed. Extracellular vesicles (EVs) play the role of communicators that carry many bioactive cargoes. Additionally, the contents of EVs can vary on the estrous cycle. Methods: We compared the effects of adding EVs derived from porcine uterine fluid (UF), categorized as non-EV (G1), EVs in estrus (G2) and EVs in diestrus (G3). After in vitro culture (IVC) was performed in three different groups, cleavage rate and blastocyst development rate were examined. In addition, glutathione (GSH) and reactive oxygen species (ROS) levels were measured 2 days after activation to assess oxidative stress. Results: Using NTA and cryo-TEM, we confirmed the presence of EVs with sizes ranging from 30 nm to 200 nm, that the particles were suitable for analysis for analysis. In IVC data, the highest cleavage rate was observed in G2, which was significantly different from G1 but not significantly different from the next highest, G3. Similarly, the highest blastocyst development rate was observed in G2, which was significantly different from G1 but not significantly different from the next highest, G3. Conclusions: These results indicate that estrus derived EVs contain biofactors beneficial for early blastocyst development, including GSH which protects the blastocyst from oxidative stress. Additionally, although diestrus-derived EVs are expected to have some effect on blastocyst development, it appeared to be less effective than estrus-derived EVs.

Keywords

Acknowledgement

The authors would like to thank to Seongja Kim for providing the porcine ovaries from the Daejeon Metropolitan Slaughterhouse.

References

  1. Bang S, Qamar AY, Fang X, Kim H, Han A, Kang H, Cha D, Shim J, Kim JH, Choi K, Yun SH, Lee H, Park HS, Kim SI, Kim JY, Saadeldin IM, Lee S, Cho J. 2023. Effects of extracellular vesicles derived from steroids-primed oviductal epithelial cells on porcine in vitro embryonic development. Theriogenology 209:213-223.  https://doi.org/10.1016/j.theriogenology.2023.07.006
  2. Beal JR, Ma Q, Bagchi IC, Bagchi MK. 2023. Role of endometrial extracellular vesicles in mediating cell-to-cell communication in the uterus: a review. Cells 12:2584. 
  3. Bulletti C, Bulletti FM, Sciorio R, Guido M. 2022. Progesterone: the key factor of the beginning of life. Int. J. Mol. Sci. 23:14138. 
  4. Chen EY, Fujinaga M, Giaccia AJ. 1999. Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 60:215-225.  https://doi.org/10.1002/(SICI)1096-9926(199910)60:4<215::AID-TERA6>3.0.CO;2-2
  5. Fang X, Bang S, Tanga BM, Seo C, Zhou D, Seong G, Saadeldin IM, Lee S, Cui XS, Cho J. 2023. Oviduct epithelial cell-derived extracellular vesicles promote the developmental competence of IVF porcine embryos. Mol. Med. Rep. 27:122. 
  6. Fang X, Tanga BM, Bang S, Seong G, Saadeldin IM, Qamar AY, Shim J, Choi K, Lee S, Cho J. 2022. Vitamin C enhances porcine cloned embryo development and improves the derivation of embryonic stem-like cells. Reprod. Biol. 22:100632. 
  7. Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr. 2000. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 14:1649-1660.  https://doi.org/10.1210/mend.14.10.0532
  8. Fuentes N and Silveyra P. 2019. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 116:135-170.  https://doi.org/10.1016/bs.apcsb.2019.01.001
  9. Fujimoto N and Kitamura S. 2004. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta. J. Steroid Biochem. Mol. Biol. 88:53-59.  https://doi.org/10.1016/j.jsbmb.2003.10.006
  10. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. 2019. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8:307. 
  11. Kang H, Bang S, Kim H, Han A, Miura S, Park HS, Saadeldin IM, Lee S, Cho J. 2023. Follicular fluid-derived extracellular vesicles improve in vitro maturation and embryonic development of porcine oocytes. Korean J. Vet. Res. 63:e40. 
  12. Kwak SS, Cheong SA, Jeon Y, Lee E, Choi KC, Jeung EB, Hyun SH. 2012. The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78:86-101.  https://doi.org/10.1016/j.theriogenology.2012.01.024
  13. Leal CLV, Canon-Beltran K, Cajas YN, Hamdi M, Yaryes A, Millan de la Blanca MG, Beltran-Brena P, Mazzarella R, da Silveira JC, Gutierrez-Adan A, Gonzalez EM, Rizos D. 2022. Extracellular vesicles from oviductal and uterine fluids supplementation in sequential in vitro culture improves bovine embryo quality. J. Anim. Sci. Biotechnol. 13:116. 
  14. Li P, Kaslan M, Lee SH, Yao J, Gao Z. 2017. Progress in exosome isolation techniques. Theranostics 7:789-804.  https://doi.org/10.7150/thno.18133
  15. Machtinger R, Laurent LC, Baccarelli AA. 2016. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22:182-193. 
  16. Mahdavinezhad F, Kazemi P, Fathalizadeh P, Sarmadi F, Sotoodeh L, Hashemi E, Hajarian H, Dashtizad M. 2019. In vitro versus in vivo: development-, apoptosis-, and implantationrelated gene expression in mouse blastocyst. Iran J. Biotechnol. 17:e2157. 
  17. Mincheva-Nilsson L and Baranov V. 2010. The role of placental exosomes in reproduction. Am. J. Reprod. Immunol. 63:520-533.  https://doi.org/10.1111/j.1600-0897.2010.00822.x
  18. Na S, Lee E, Kim G, Min K, Yu Y, Roy PK, Fang X, Hassan BMS, Yoon K, Shin S, Cho J. 2015. Study on embryo transfer system for production of transgenic pigs. J. Emb. Trans. 30:345-350.  https://doi.org/10.12750/JET.2015.30.4.345
  19. Orrenius S, Gogvadze V, Zhivotovsky B. 2007. Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47:143-183.  https://doi.org/10.1146/annurev.pharmtox.47.120505.105122
  20. Park JE, Lee ST, Lee GS, Lee E. 2022. In vitro maturation on a soft agarose matrix enhances the developmental ability of pig oocytes derived from small antral follicles. J. Anim. Reprod. Biotechnol. 37:34-41.  https://doi.org/10.12750/JARB.37.1.34
  21. Park Y, Park YB, Lim SW, Lim B, Kim JM. 2022. Time series ovarian transcriptome analyses of the porcine estrous cycle reveals gene expression changes during steroid metabolism and corpus luteum development. Animals (Basel) 12:376. 
  22. Prasad S, Tiwari M, Pandey AN, Shrivastav TG, Chaube SK. 2016. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 23:36. 
  23. Qi H, Wang Y, Fa S, Yuan C, Yang L. 2021. Extracellular vesicles as natural delivery carriers regulate oxidative stress under pathological conditions. Front. Bioeng. Biotechnol. 9: 752019. 
  24. Saadeldin IM, Tanga BM, Bang S, Fang X, Yoon KY, Lee S, Cho J. 2022. The theranostic roles of extracellular vesicles in pregnancy disorders. J. Anim. Reprod. Biotechnol. 37:2-12.  https://doi.org/10.12750/JARB.37.1.2
  25. Saadeldin IM, Tanga BM, Bang S, Maigoro AY, Kang H, Cha D, Lee S, Lee S, Cho J. 2023. MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis. Funct. Integr. Genomics 23:200. 
  26. Saeidnia S, Manayi A, Abdollahi M. 2015. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr. Drug Discov. Technol. 12:218-224.  https://doi.org/10.2174/1570163813666160114093140
  27. Satterfield MC, Hayashi K, Song G, Black SG, Bazer FW, Spencer TE. 2008. Progesterone regulates FGF10, MET, IGFBP1, and IGFBP3 in the endometrium of the ovine uterus. Biol. Reprod. 79:1226-1236.  https://doi.org/10.1095/biolreprod.108.071787
  28. Xiang D, Liu Y, Zhou S, Zhou E, Wang Y. 2021. Protective effects of estrogen on cardiovascular disease mediated by oxidative stress. Oxid. Med. Cell. Longev. 2021:5523516.