DOI QR코드

DOI QR Code

Evaluation of the effects of co-culture system of human dental pulp stem cells and epithelial cells on odonto/osteogenic differentiation capacity

  • Sang-Yun Lee (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Seong-Ju Oh (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Rubel Miah (Department of Obstetrics, College of Veterinary Medicine, Chonnam National University) ;
  • Yong-Ho Choe (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Sung-Lim Lee (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Yeon Woo Jeong (Department of Companion Animal and Animal Resources Science, Joongbu University) ;
  • Young-Bum Son (Department of Obstetrics, College of Veterinary Medicine, Chonnam National University)
  • 투고 : 2024.04.07
  • 심사 : 2024.05.29
  • 발행 : 2024.06.30

초록

Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.

키워드

과제정보

This study was supported by Chonnam National University (grant number: 2024-0421).

참고문헌

  1. Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, Saito M, Otsu K, Harada H, Yamada Y, Fukumoto S. 2012. Role of epithelial-stem cell interactions during dental cell differentiation. J. Biol. Chem. 287:10590-10601.  https://doi.org/10.1074/jbc.M111.285874
  2. Arana-Chavez VE and Massa LF. 2004. Odontoblasts: the cells forming and maintaining dentine. Int. J. Biochem. Cell Biol. 36:1367-1373.  https://doi.org/10.1016/j.biocel.2004.01.006
  3. Baldion PA, Velandia-Romero ML, Castellanos JE. 2018. Odontoblast-like cells differentiated from dental pulp stem cells retain their phenotype after subcultivation. Int. J. Cell Biol. 2018:6853189. 
  4. Barbareschi M, Pecciarini L, Cangi MG, Macri E, Rizzo A, Viale G, Doglioni C. 2001. P63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am. J. Surg. Pathol. 25:1054-1060.  https://doi.org/10.1097/00000478-200108000-00010
  5. Botchkarev VA, Botchkareva NV, Albers KM, Chen LH, Welker P, Paus R. 2000. A role for p75 neurotrophin receptor in the control of apoptosis-driven hair follicle regression. FASEB J. 14:1931-1942.  https://doi.org/10.1096/fj.99-0930com
  6. Chen Y, Bei M, Woo I, Satokata I, Maas R. 1996. Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122:3035-3044.  https://doi.org/10.1242/dev.122.10.3035
  7. Ching HS, Luddin N, Rahman IA, Ponnuraj KT. 2017. Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review. Curr. Stem. Cell Res. Ther. 12:71-79.  https://doi.org/10.2174/1574888X11666160815095733
  8. Farges JC, Alliot-Licht B, Baudouin C, Msika P, Bleicher F, Carrouel F. 2013. Odontoblast control of dental pulp inflammation triggered by cariogenic bacteria. Front. Physiol. 4:326. 
  9. Goers L, Freemont P, Polizzi KM. 2014. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11:20140065. 
  10. Goldberg M and Lasfargues JJ. 1995. Pulpo-dentinal complex revisited. J. Dent. 23:15-20.  https://doi.org/10.1016/0300-5712(95)90655-2
  11. Guo L, Li J, Qiao X, Yu M, Tang W, Wang H, Guo W, Tian W. 2013. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One 8:e62332. 
  12. Kawashima N and Okiji T. 2016. Odontoblasts: specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit. Anom. (Kyoto) 56:144-153.  https://doi.org/10.1111/cga.12169
  13. Keung AJ, Kumar S, Schaffer DV. 2010. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu. Rev. Cell Dev. Biol. 26:533-556.  https://doi.org/10.1146/annurev-cellbio-100109-104042
  14. Koch WE. 1967. In vitro differentiation of tooth rudiments of embryonic mice. I. Transfilter interaction of embryonic incisor tissues. J. Exp. Zool. 165:155-170.  https://doi.org/10.1002/jez.1401650202
  15. Lee HK, Park JW, Seo YM, Kim HH, Lee G, Bae HS, Park JC. 2016. Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp. J. Mol. Histol. 47:345-351.  https://doi.org/10.1007/s10735-016-9676-1
  16. Li B, Ouchi T, Cao Y, Zhao Z, Men Y. 2021. Dental-derived mesenchymal stem cells: state of the art. Front. Cell Dev. Biol. 9: 654559. 
  17. Li TX, Yuan J, Chen Y, Pan LJ, Song C, Bi LJ, Jiao XH. Differentiation of mesenchymal stem cells from human umbilical cord tissue into odontoblast-like cells using the conditioned medium of tooth germ cells in vitro. Biomed Res. Int. 2013: 218543. 
  18. Lim HM, Nam MH, Kim YM, Seo YK. 2021. Increasing odontoblast-like differentiation from dental pulp stem cells through increase of β-catenin/p-GSK-3β expression by lowfrequency electromagnetic field. Biomedicines 9:1049. 
  19. Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG. 2011. Chemical control of stem cell fate and developmental potential. Angew. Chem. Int. Ed. Engl. 50:200-242.  https://doi.org/10.1002/anie.201004284
  20. Mohd Yunus MH, Rashidbenam Z, Fauzi MB, Bt Hj Idrus R, Bin Saim A. 2021. Evaluating feasibility of human tissue engineered respiratory epithelium construct as a potential model for tracheal mucosal reconstruction. Molecules 26:6724. 
  21. Moore KA and Lemischka IR. 2006. Stem cells and their niches. Science 311:1880-1885.  https://doi.org/10.1126/science.1110542
  22. Nam H and Lee G. 2009. Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem. Biophys. Res. Commun. 386:135-139.  https://doi.org/10.1016/j.bbrc.2009.05.141
  23. Oh SJ, Jo CH, Kim TS, Hong CY, Lee SL, Kang YH, Rho GJ. 2023. Sphingosine-1-phosphate treatment improves cryopreservation efficiency in human mesenchymal stem cells. Life (Basel) 13:1286. 
  24. Seltana A, Basora N, Beaulieu JF. 2010. Intestinal epithelial wound healing assay in an epithelial-mesenchymal coculture system. Wound Repair Regen. 18:114-122.  https://doi.org/10.1111/j.1524-475X.2009.00554.x
  25. Smith CE and Warshawsky H. 1977. Quantitative analysis of cell turnover in the enamel organ of the rat incisor. Evidence for ameloblast death immediately after enamel matrix secretion. Anat. Rec. 187:63-98.  https://doi.org/10.1002/ar.1091870106
  26. Son YB, Kang YH, Lee HJ, Jang SJ, Bharti D, Lee SL, Jeon BG, Park BW, Rho GJ. 2021. Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17β-estradiol on efficiency. BMC Oral Health 21:15. 
  27. Ten Cate AR. 1996. The role of epithelium in the development, structure and function of the tissues of tooth support. Oral. Dis. 2:55-62.  https://doi.org/10.1111/j.1601-0825.1996.tb00204.x
  28. Thesleff I, Vaahtokari A, Partanen AM. 1995. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int. J. Dev. Biol. 39:35-50. 
  29. Woo SM, Seong KJ, Oh SJ, Park HJ, Kim SH, Kim WJ, Jung JY. 2015. 17β-estradiol induces odontoblastic differentiation via activation of the c-Src/MAPK pathway in human dental pulp cells. Biochem. Cell Biol. 93:587-595.  https://doi.org/10.1139/bcb-2015-0036
  30. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F. 1999. P63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714-718. https://doi.org/10.1038/19539