DOI QR코드

DOI QR Code

Characteristics Analysis of Traffic Flow in BRT section according to Market Penetration Rates of Autonomous Vehicles

자율주행자동차 혼입률에 따른 BRT 구간 교통류 특성 분석

  • Do, Myungsik (Hanbat National University) ;
  • Chae, Un Hyeok (Korea Transport Institute)
  • 도명식 (국립한밭대학교 도시공학과) ;
  • 채운혁 (한국교통연구원)
  • Received : 2024.02.26
  • Accepted : 2024.05.10
  • Published : 2024.08.01

Abstract

The purpose of this study is to analyze traffic flow characteristics according to the market penetration rate (MPR) of autonomous vehicles (AV) on road sections where bus rapid transit (BRT) is actually operating. Furthermore, the maximum traffic volume was set through estimation of future traffic demand, and traffic flow characteristics were analyzed through traffic simulation for each scenario considering of a combination of BRT introduction and AV's MPR. To test statistical significance, Kruskal-Willis test and Jonckheere-Terpstra test were used to examine the impact of the market penetration rate of Autonomous vehicles on travel time and delay time etc. At the same time, the existence of the order relationship among travel time data according to the market penetration rate of autonomous vehicle was examined. As a result of the analysis, it was founded that the travel time significantly decreased as the MPR of AV increases in both intermittent flow and continuous flow environments. In particular, in the case of continuous flow, the law of increasing returns was satisfied in the effect of increasing travel speed and reducing travel time as the MPR of AV increases. The results of this study are expected to be used as a basic information for design plans for road reconstruction and space utilization after the commercialization of AV in the future.

본 연구에서는 실제 BRT를 운행 중인 도로 구간을 대상으로 자율주행자동차(AV)의 혼입률에 따른 교통류 특성을 분석하는 것을 목적으로 한다. 나아가 미래 교통수요의 추정을 통해 최대 교통량 수준을 설정하였으며, BRT 도입 여부와 자율주행자동차 혼입률의 조합으로 구성된 시나리오별로 교통 시뮬레이션을 통해 교통류 특성 분석을 실시하였다. 통계적 유의성을 검정하기 위해 Kruskal-Wallis test와 Jonckheere-Terpstra test를 통해, 자율주행자동차 혼입률이 통행시간과 지체시간에 미치는 영향을 살펴보았으며, 동시에 혼입률에 따른 통행시간 데이터의 서열관계가 존재하는 지를 분석하였다. 분석 결과, 단속류와 연속류 환경에서 모두 AV 혼입률이 증가할수록 구간 통행시간이 유의미하게 감소함을 밝혔으며, 특히 연속류의 경우에 혼입률의 증가에 따라 통행속도의 증가와 통행시간의 감소 효과에서 수확 체증의 법칙(law of increasing returns)이 성립함을 확인하였다. 향후 본 연구의 결과를 기반으로 자율주행자동차 시대에서 도로의 재구조화 방안 및 공간 활용에 대한 추가적 연구가 필요하다고 판단된다.

Keywords

References

  1. Adekunle, M. (2020). "Complete street concept, and ensuring safety of vulnerable road users." Transportation Research Procedia, Vol. 48, pp. 1142-1165, https://doi.org/10.1016/j.trpro.2020.08.139.
  2. Atkins (2016). "Research on the impacts of connected and autonomous vehicles(CAVs) on traffic flow." Department for Transport UK.
  3. Bewick, V., Cheek, L. and Ball, J. (2004). "Statistics review 10: Further nonparametric methods." Critical Care, Vol. 8, No. 3, pp. 196-199, https://doi.org/10.1186/cc2857.
  4. Calvert, S. C., Schakel, W. J. and van Lint, J. W. C. (2017). "Will automated vehicles negatively impact traffic flow?." Journal of Advanced Transportation, 2017, 3082781, https://doi.org/10.1155/2017/3082781.
  5. Chan, Y. and Walmsley, R. (1997). "Learning and understanding the kruskal-wallis one-way analysis-of-variance-by-ranks test for difference among three or more independent groups." Physical Therapy, Vol. 77, No. 12, pp. 1755-1761, https://doi.org/10.1093/ptj/77.12.1755.
  6. Cho, D., Yang, S. and Song, H. (2010). "A nonparametric stratified test based on the jonckheere-terpstra trend statistic." The Korean Journal of Applied Statistics, Vol. 23, No. 6, pp. 1081-1091, https://doi.org/10.5351/KJAS.2010.23.6.1081 (in Korean).
  7. Choi, W., Lee, J., Huh, M. and Kang, S. (2003). "An algorithm for computing the exact distribution of the Kruskal-Wallis test." Communications in Statistics-Simulation and Computation, Vol. 32, No. 4, pp. 1029-1040, https://doi.org/10.1081/SAC-120023876.
  8. Daejeon Metropolitan City (2022). "Traffic Status Survey and Analysis Report for Daejeon Metropolitan City 2022."
  9. ITDP (2016). "The BRT Standard." ITDP-India.
  10. Jung, S. (2017). "Impacts of automated vehicles on running stability traffic flow and traffic safety." Hongik University Dissertation (in Korean).
  11. Korean Development Institute (KDI) (2008). "Revised and Supplemented Study of Preliminary Feasibility Study Standard Guidelines for Road and Rail Sector Projects (Fifth Edition)."
  12. Kruskal, W. and Wallis, A. (1952). "Use of ranks in one-criterion variance analysis." Journal of the American Statistical Association, Vol. 47, No. 260, pp. 583-621, https://doi.org/10.2307/2280779.
  13. Lu, Q., Tettamanti, T., Horcher, D. and Varga, I. (2020). "The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation." Transportation Letters, Vol. 12, No. 8, pp. 540-549, https://doi.org/10.1080/19427867.2019.1662561.
  14. Makridis, M., Mattas, K., Biagio, C., Alonso, M. R., Tomer, T. and Thiel, C. (2018). "Connected and Automated Vehicles on a freeway scenario : Effect on traffic congestion and network capacity." 7th Transport Research Arena TRA 2018, Vienna, pp. 16-19.
  15. Mena, O., Gozalvez, J. and Miguel, S. (2018). "Effect of the configuration of platooning maneuvers on the traffic flow under mixed traffic scenarios." 2018 IEEE Vehicular Networking Conference.
  16. Ministry of Land, Infrastructure and Transport (MOLIT) (2022). "Appraisal Guidelines for Transport Facilities Investment (Seven Edition)."
  17. Ministry of Land, Infrasturcture and Transport (MOLIT) (2022). "Technical Standards for Express Bus System Facilities" (in Korean)
  18. Ministry of Land, Transport and Maritime Affairs (MOLIT) (2010). "BRT Design Guidelines" (in Korean).
  19. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2013). "Highway Capacity Manual" (in Korean).
  20. National Highway Traffic Safety Administration (2016). "Federal Automated Vehicles Policy : Accelerating the Next Revolution in Roadway Safety."
  21. Oh, S., Yun, J. and Lee, J. (2023). "Impact of mixed traffic in urban networks : Investigating the effects of varying autonomous vehicle levels and penetration rates." Journal of Korean Society of Tranportation, Vol. 41, No. 3, pp. 321-339, https://doi.org/10.7470/jkst.2023.41.3.321 (in Korean).
  22. Pedro, F. and Urbano, J. (2012). "Platooning with IVC-enabled autonomous vehicles : Strategies to mitigate communication delays, improve safety and traffic flow." IEEE Transactions on Intelligent Transportation Systems, Vol. 13, No. 1, pp. 91-106.
  23. PTV Group (2018). "PTV Vissim 10 user manual." PTV AG, 2018.
  24. Shalaby, S. and Soberman, M. (1994). "Effect of with-flow bus lanes on bus travel times." Transportation Research Record, 1433, pp. 24-30.
  25. Tonya, W., Jan, V. and Thomas, E. (2019). "Beyond Bonferroni revisited : concerns over inflated false positive research findings in the fields of conservation genetics, biology, and medicine." Conservation Genetics, Vol. 20, pp. 927-937, https://doi.org/10.1007/s10592-019-01178-0.
  26. Wiedemann, R. (1974). "Simulation des Strasenverkehrsflusses." Schriftenreihe des Institut fur Verkehrswesen der Universitat Karlsruhe, Heft 8 (in German).