DOI QR코드

DOI QR Code

자동복원 마찰슬릿댐퍼의 해석적 거동특성 분석

Analytical Behavior Characteristics Analysis of Automatic Restoring Friction Slit Damper

  • 이헌우 (인천대학교 건설환경공학과) ;
  • 허종완 (인천대학교 도시환경공학부)
  • Lee, Heon-Woo (Incheon National University) ;
  • Hu, Jong-Wan (Incheon National University)
  • 투고 : 2024.05.03
  • 심사 : 2024.05.18
  • 발행 : 2024.08.01

초록

본 연구에서는 기존에 사용 및 연구되고 있는 자동복원 댐퍼, 마찰댐퍼, 강재댐퍼의 개념을 합쳐 자동복원 마찰슬릿댐퍼를 제안한다. 이를 위해 자동복원을 위한 초탄성 형상기억합금을 사용하고 마찰댐퍼와 슬릿댐퍼의 개념을 합친 혁신적인 댐퍼 구조를 고안하였다. 이후 이에 대한 상세 설계를 진행하였으며 재료, 스트럿 폭, 볼트 체결력 등의 변수를 설정하였다. 총 12가지 댐퍼에 대해 ABAQUS 프로그램을 사용하여 모델링을 수행하고 설계된 로딩프로토콜을 대입하여 유한요소해석을 수행하였다. 결과적으로 초탄성 형상기억합금을 사용한 자동복원 마찰슬릿댐퍼는 하중측면으로 우수하였지만 우수한 회복성능으로 에너지 소산능력은 크게 확보되지 않았다. 하지만 Gr.50 강재가 적용된 마찰슬릿댐퍼는 혁신적인 구조개선을 통해 하중, 에너지소산 등의 성능이 비약적으로 상승하였다. 이를 통해 마찰댐퍼와 강재댐퍼의 메커니즘이 합쳐진 댐퍼의 혁신적인 구조를 증명하였다.

In this study, we propose a self-restoring friction slit damper by combining the concepts of self-restoring dampers, friction dampers, and steel dampers that are currently used and researched. For this purpose, an innovative damper structure was designed using superelastic shape memory alloy for automatic recovery and combining the concepts of friction damper and slit damper. Afterwards, detailed design was carried out and variables such as material, with of strut, and bolt fastening force were set. Modeling was performed using the ABAQUS program for a total of 12 dampers, and finite element analysis was performed by substituting the designed loading protocol. As a result, the self-recovering friction slit damper using superelastic shape memory alloy was excellent in terms of load, but the energy dissipation ability was not significantly secured due to the excellent recovery performance. However, friction slit dampers made of Gr.50 steel have dramatically improved performance in terms of load and energy dissipation through innovative structural improvements. Through this, the innovative structure of the damper, which combines the mechanisms of a friction damper and a steel damper, was demonstrated.

키워드

과제정보

This research was supported by the Basic Science Research Program through a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A2B5B02002599).

참고문헌

  1. Buckle, I. G. and Mayes, R. L. (1990). "Seismic isolation: history, application, and performance-a world view." Earthquake Spectra, Vol. 6, No. 2, pp. 161-201. 
  2. Clark, P. W. (2002). Protocol for fabrication, inspection, testing and documentation of beam-colum connection tests and other experimental specimens, SAC Joint Venture. 
  3. Gagnon, L., Morandini, M. and Ghiringhelli, G. L. (2020). "A review of friction damping modeling and testing." Archive of Applied Mechanics, Vol. 90, pp. 107-126. 
  4. Javanmardi, A., Ibrahim, Z., Ghaedi, K., Benisi Ghadim, H. and Hanif, M. U. (2020). "State-of-the-art review of metallic dampers: testing, development and implementation." Archives of Computational Methods in Engineering, Vol. 27, pp. 455-478. 
  5. Kim, Y. C., Lee, H. W. and Hu, J. W. (2023). "A study on performance evaluation of hybrid dampers." Structures, Vol. 58, 105354. 
  6. KS, 2022. Set of high strength hexagon bolt, hexagon nut and plain washers for friction grip joints, KS B 1010 : 2022. 
  7. Lazar, I. F., Neild, S. A. and Wagg, D. J. (2014). "Using an inerter-based device for structural vibration suppression." Earthquake Engineering & Structural Dynamics, Vol. 43, No. 8, pp. 1129-1147. 
  8. Lee, C. H., Ryu, J., Oh, J., Yoo, C. H. and Ju, Y. K. (2016). "Friction between a new low-steel composite material and milled steel for SAFE Dampers." Engineering Structures, Vol. 122, pp. 279-295. 
  9. Qiu, C., Wang, H., Liu, J., Qi, J. and Wang, Y. (2020). "Experimental tests and finite element simulations of a new SMA-steel damper." Smart Materials and Structures, Vol. 29, No. 3, 035016. 
  10. Tanaka, T., Makii, K., Ueda, H., Kushibe, A., Kohzu, M. and Higashi, K. (2003). "Study on practical application of a new seismic damper using a Zn-Al alloy with a nanocrystalline microstructure." International Journal of Mechanical Sciences, Vol. 45, No. 10, pp. 1599-1612. 
  11. Wilkinson, S., Hurdman, G. and Crowther, A. (2006). "A moment resisting connection for earthquake resistant structures." Journal of Constructional Steel Research, Vol. 62, No. 3, pp. 295-302.