Brief Research Report | Oncologic Imaging

eISSN 2005-8330 https://doi.org/10.3348/kjr.2024.0243 Korean J Radiol 2024;25(8):742-748

A Novel Melanin-Targeted ¹⁸F-PFPN Positron Emission Tomography Imaging for Diagnosing Ocular and Orbital Melanoma

Yiyan Wang^{1*}, Xinghua Wang^{1*}, Jie Zhang¹, Xiao Zhang², Yang Cheng¹, Fagang Jiang¹

¹Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ²Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Objective: ¹⁸F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy) picolinamide (¹⁸F-PFPN) is a novel positron emission tomography (PET) probe designed to specifically targets melanin. This study aimed to evaluate the diagnostic feasibility of ¹⁸F-PFPN in patients with ocular or orbital melanoma.

Materials and Methods: Three patients with pathologically confirmed ocular or orbital melanoma (one male, two females; age 41–59 years) were retrospectively reviewed. Each patient underwent comprehensive ¹⁸F-PFPN and ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) PET scans. The maximum standardized uptake value (SUV_{max}) of the lesion and the interference caused by background tissue were compared between ¹⁸F-PFPN and ¹⁸F-FDG PET imaging. In addition, the effect of intrinsic pigments in the uvea and retina on the interpretation of the results was examined. The contralateral non-tumorous eye of each patient served as a control.

Results: All primary tumors (3/3) were detected using ¹⁸F-PFPN PET, while only two primary tumors were detected using ¹⁸F-FDG PET. Within each lesion, the SUV_{max} of ¹⁸F-PFPN was 2.6 to 8.3 times higher than that of ¹⁸F-FDG. Regarding the quality of PET imaging, the physiological uptake of ¹⁸F-FDG PET in the brain and periocular tissues limited the imaging of tumors. However, ¹⁸F-PFPN PET minimized this interference. Notably, intrinsic pigments in the uvea and retina did not cause abnormal concentrations of ¹⁸F-PFPN, as no anomalous uptake of ¹⁸F-PFPN was detected in the healthy contralateral eyes.

Conclusion: Compared to ¹⁸F-FDG, ¹⁸F-PFPN demonstrated higher detection rates for ocular and orbital melanomas with minimal interference from surrounding tissues. This suggests that ¹⁸F-PFPN could be a promising clinical diagnostic tool for distinguishing malignant melanoma from benign pigmentation in ocular and orbital melanomas.

Keywords: Ocular melanoma; Orbital melanoma; Positron emission tomography; ¹⁸F-FDG; ¹⁸F-PFPN

INTRODUCTION

Melanoma is a malignant neoplasm originating from melanocytes and has a high mortality rate [1]. Ocular and orbital melanomas, the second most common type of melanoma following cutaneous melanomas [2], can be less intuitive to identify because they are often located within or behind the eyeball. Traditional imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and certain ocular examinations, such as fundus photography, fundus angiography, and optical coherence tomography, have been utilized to detect these tumors [3,4]. However, these methods have limitations. Not all tumors are easily visible in these images, as some small

Received: March 13, 2024 **Revised:** May 7, 2024 **Accepted:** May 22, 2024 *These authors contributed equally to this work.

Corresponding author: Fagang Jiang, PhD, Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei 430022, China

[•] E-mail: fgjiang@hust.edu.cn

Corresponding author: Yang Cheng, PhD, Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei 430022, China

[•] E-mail: yang_cheng@hust.edu.cn

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https:// creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ocular melanomas and ocular nevi often appear similarly [5]. Furthermore, site-specific imaging does not provide comprehensive views of the entire body.

Positron emission tomography (PET) using ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) is the predominant wholebody imaging modality [6]. In clinical practice, ¹⁸F-FDG PET has proven useful for identifying [7,8], staging [9], and predicting the prognosis [10] of patients with advanced (stage III-IV) or medium-to-large uveal melanomas (UMs). However, it has insufficient sensitivity for detecting stages I–II and small UMs [8]. Additionally, ¹⁸F-FDG PET imaging may be limited by uptake in periocular tissues, such as the brain [11], which can affect the detection of ocular and orbital tumors.

¹⁸F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy) ethoxy)ethoxy) picolinamide (¹⁸F-PFPN) is an emerging melanin-specific PET tracer targets melanin in tumors [12]. Given that over 90% of melanomas contain melanin [13], the potential applications of ¹⁸F-PFPN are substantial. Recent studies have highlighted the safety and tolerability of ¹⁸F-PFPN in humans [14]. Compared to ¹⁸F-FDG, ¹⁸F-PFPN demonstrated higher detection rates in skin and rectal melanomas and could pinpoint metastatic lesions smaller than 2 mm [14]. To date, there have been no systematic studies on ¹⁸F-PFPN in ocular and orbital melanomas. This study aimed to investigate the diagnostic feasibility of ¹⁸F-PFPN in patients with ocular or orbital melanoma and to examine the effect of intrinsic pigments in the uvea and retina on ¹⁸F-PFPN imaging in the contralateral healthy eyes of these patients.

MATERIALS AND METHODS

Patients

This retrospective analysis included selected patients from a trial (ClinicalTrials.gov number: NCT04747561) approved by the local Institutional Ethics Committee (IRB No. 2021-0016). All the participants provided written informed consent. From August 2022 to September 2023, three patients (one male and two females; age 41–59 years) with pathologically confirmed ocular or orbital melanoma at our hospital were retrospectively analyzed. Demographic data, clinical presentation, tumor location, and size, ¹⁸F-PFPN and ¹⁸F-FDG PET results, and other imaging findings, including CT, MRI, US, fundus photography, and fundus fluorescein angiography, were collected.

Image Acquisition

The patients underwent both ¹⁸F-PFPN PET/MRI and ¹⁸F-FDG PET/CT imaging sessions within a brief interval (no more than one week) of each other. All scans covered the entire body, from the brain to the foot.

¹⁸F-PFPN PET/MR Imaging

¹⁸F-PFPN, a molecular probe that specifically binds to melanin, was synthesized as described previously [12]. ¹⁸F-PFPN PET/MRI was performed using a Signa PET/MR scanner (SIGNA[™] PET/MR; GE Healthcare, Chicago, IL, USA). Each patient received an intravenous injection of ¹⁸F-PFPN at a dose of 3.0–5.4 MBq/kg, followed by wholebody PET/MR imaging after a two-hour rest period. Axial T1weighted MR was performed using the LAVA-FLEX sequence, while coronal T2-weighted MR was performed using the fastrecovery fast spin-echo sequence. PET image reconstruction utilizes the ordered subset maximization iterative method with a combined time-of-flight technique and a point diffusion function comprising two iterations and 28 subsets, followed by Gaussian filtering (3 mm) for image processing.

¹⁸F-FDG PET/CT Imaging

PET/CT imaging was conducted using a PET/CT scanner (Discovery VCT®; GE Healthcare, Milwaukee, WI, USA). Patients underwent a minimum six-hour fasting period, and ¹⁸F-FDG was administered intravenously at a dose of 3.7–5.4 MBq/kg after ensuring that their blood glucose was below 11.1 mmol/L. Subsequently, PET/CT imaging was performed after sixty minutes of calm rest. CT images were obtained with parameters set at 120 kV, 80 mA, and a thickness layer of 3.75 mm. PET image reconstruction was performed using the ordered subset expectation maximization iterative method with a reconstruction matrix of 512 x 512 and a thickness of 3 mm.

Image Interpretation

The lesion volumes of interest were mapped on PET/MRI and PET/CT fusion images using the three-dimensional outlining method on the Advantage Workstation version AW4.6 (GE Healthcare, Milwaukee, WI, USA). The system automatically calculated the maximum standardized uptake value (SUV_{max}) of the lesions. The raw SUV_{max} was normalized using the method described by Zhang et al. [14].

Normalized SUV_{max} = raw SUV_{max}/SUV_{bkgd}

Where $\mathsf{SUV}_{\mathsf{bkgd}}$ refers to the mean $\mathsf{SUV}_{\mathsf{max}}$ of the descending aorta.

The SUV_{max} of ¹⁸F-PFPN and ¹⁸F-FDG within lesions was quantitatively compared, using pathological findings as the basis for the final diagnosis. Additionally, the effect of intrinsic pigments in the uvea and retina on the interpretation of the results was examined, with the contralateral non-tumorous eye of each patient serving as a control.

RESULTS

This study evaluated three patients who underwent multimodal imaging. The clinical manifestations and imaging findings of each patient are shown in Table 1. The participants included three types of patients with melanomas occurring in different anatomical locations of the eye. Patient #1 was a 59-year-old female with melanoma of the eyelid and conjunctiva (Supplementary Fig. 1); patient #2 was a 49-year-old female with orbital melanoma (Supplementary Fig. 2); and patient #3 was a 41-year-old male with choroidal melanoma (Supplementary Fig. 3).

Our results showed that ¹⁸F-PFPN had a higher detection rate than ¹⁸F-FDG in these melanomas. This enhanced performance is evident from two primary observations.

Firstly, abnormal accumulation of ¹⁸F-PFPN was evident in the primary tumors of all participants (3/3). In contrast, only two participants (2/3) showed high uptake levels using ¹⁸F-FDG (patient #1: Fig. 1, patient #2: Fig. 2, patient #3: Fig. 3). One tumor lesion was missed when using ¹⁸F-FDG, likely because of the small size of the tumor. Secondly, the SUV_{max} of ¹⁸F-PFPN consistently exceeded that of ¹⁸F-FDG within the same patient, ranging from 2.6 to 8.3 times greater.

Subsequently, we compared the imaging quality of ¹⁸F-PFPN and ¹⁸F-FDG PET scans. The results showed that ¹⁸F-PFPN PET provided a clearer visualization of lesions owing to the low background uptake. In contrast, ¹⁸F-FDG PET images showed interference in the visualization of ocular and orbital melanomas because of physiological uptake in the brain and periocular tissues (Figs. 1B, 2B, 3B: green boxes). This interference was reduced in ¹⁸F-PFPN PET images (Figs. 1A, 2A, 3A: red boxes). Moreover, neither ¹⁸F-PFPN nor ¹⁸F-FDG scans showed abnormal concentrations in the contralateral non-tumor eye of any participant, which is in line with the self-referential comparison.

No metastases were detected in any patient. Patient #2 underwent excision of an intraorbital mass; however, followup scans using both ¹⁸F-FDG and ¹⁸F-PFPN PET revealed tumor residue in the orbital cavity.

	Patient #1	Patient #2	Patient #3
Sex	Female	Female	Male
Age, yr	59	49	41
Clinical features	Pigmented mass in the right eye	Swelling in the right eye	A dark shadow covered the right eye
Tumor			
Location	Eyelid and conjunctiva	Orbit	Choroid
Size, mm	13 x 5 x 5	33 x 27	11 x 6
SUV _{max} of the primary tumor			
¹⁸ F-PFPN	16.6	36.2	10.6
¹⁸ F-FDG	2.0	9.2	4.1
¹⁸ F-PFPN: ¹⁸ F-FDG	8.3:1.0	3.9:1.0	2.6:1.0
Other imaging methods and findings			
MR*	High T1WI and high T2WI	High T1WI and low T2WI	High T1WI and low T2WI
СТ	Nodular enhancement signal	Nodular mixed signal	High-density signal with significant enhancement
US	-	-	Dome-shaped mass
FP	-	-	Caesious local solid bulge
FFA	-	-	Punctate hyper fluorescence in filling phases

*MR protocols: axial T1-weighted MR was conducted using the LAVA-FLEX sequence, and coronal T2-weighted MR was performed using the fast-recovery fast spin-echo sequence.

Fig. 1. A 59-year-old female with melanoma of the eyelid and conjunctiva. **A:** In ¹⁸F-PFPN PET images, the tumor lesion (red box and arrows) can be clearly visualized. The SUV_{max} of ¹⁸F-PFPN at the lesion was 16.6. MR imaging demonstrated an abnormal signal shadow in the lower lid of the right eye. **B:** In ¹⁸F-FDG PET images, the brain and periocular tissues interfered with the visualization of the tumor, which made it difficult to identify the tumor (green box and arrows). The SUV_{max} of ¹⁸F-FDG at the lesion was 2.0. A thickened lesion site could be seen in the CT image. ¹⁸F-PFPN = ¹⁸F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy) picolinamide, PET = positron emission tomography, SUV_{max} = maximum standardized uptake value, MR = magnetic resonance, ¹⁸F-FDG = ¹⁸F-fluorodeoxyglucose, CT = computed tomography, FLAIR = fluid-attenuated inversion recovery

DISCUSSION

This study describes the clinical presentations and imaging characteristics of a cohort of patients diagnosed with ocular or orbital melanomas. Furthermore, we compared the diagnostic efficacy of ¹⁸F-PFPN with ¹⁸F-FDG in these tumors. We preferred to combine MR with PET, especially when using ¹⁸F-PFPN as a tracer because the inherent paramagnetic properties of pigmented lesions can be observed on MR. These lesions often exhibit characteristic high signals on T1weighted images and low signals on T2-weighted images, which can enhance the accuracy of image analysis.

This study found that ¹⁸F-PFPN showed higher detection rates for ocular and orbital melanomas than ¹⁸F-FDG, and had less interference from background tissues. This finding is similar to that of Zhang et al. [14], who reported that ¹⁸F-PFPN could detect T2b stage melanoma and that the SUV_{max} of ¹⁸F-PFPN at the primary site was 3.92 times higher than that of ¹⁸F-FDG. Although none of the patients in this study had metastases, Zhang et al. [14] showed that ¹⁸F-PFPN could detect more and smaller melanoma metastases, identifying 365 metastases that were missed by ¹⁸F-FDG, including one smaller than 2 mm.

Although ¹⁸F-PFPN targets melanin, the normal presence of pigments in the retinal and uveal tissues does not appear to interfere with the results of ¹⁸F-PFPN. In this study, no abnormal concentrations of ¹⁸F-PFPN were detected in the contralateral normal eyes of any patient. In a study of a healthy population, the mean SUV in eye tissue increased from 0.79 \pm 0.07 at 30 minutes after injecting ¹⁸F-PFPN to 1.32 \pm 0.30 at 240 minutes, but these levels did not meet the criteria for pathological evaluation [14]. This finding suggests that ¹⁸F-PFPN has the potential to distinguish malignant melanomas from benign pigmentation.

Although ¹⁸F-PFPN has shown many advantages in detecting melanoma, it may not be as sensitive as ¹⁸F-FDG for identifying amelanotic melanoma [12,14], which accounts for approximately 2%–8% of melanomas [15]. This study presents a novel diagnostic challenge. This study has some limitations. First, the relative scarcity of these cases led to a limited sample size, preventing a more detailed statistical analysis of the data. Second, patients with nevi or other pigmented diseases requiring differentiation from malignant melanoma were not included. This will be the

Fig. 2. A 49-year-old female with orbital melanoma. **A:** In ¹⁸F-PFPN PET images, showing the upper portion of the lesion and its relationship to the ocular structures (the entire extent of the lesion is presented in Supplementary Fig. 2), the tumor lesion (red box and arrows) can be clearly visualized. The SUV_{max} of ¹⁸F-PFPN at the lesion was up to 36.2. MR imaging demonstrated an occupation within the right orbit with a high signal on T1-weighted images and a low signal on T2-weighted images. The occupation pushed against the rectus externus, rectus internus, and optic nerve, and breached the adjacent great wing of the sphenoid bone. **B:** In ¹⁸F-FDG PET images, the brain and periocular tissues interfered with the visualization of the tumor, which made it difficult to identify the tumor (green box and arrows). The SUV_{max} of ¹⁸F-FDG at the lesion was 9.2. CT demonstrated an abnormal soft tissue density shadow within the right orbit. ¹⁸F-PFPN = ¹⁸F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy) picolinamide, PET = positron emission tomography, SUV_{max} = maximum standardized uptake value, MR = magnetic resonance, ¹⁸F-FDG = ¹⁸F-fluoroetoxyglucose, CT = computed tomography

focus of future studies.

To the best of our knowledge, this is the first study to evaluate the ability of melanin-targeted ¹⁸F-PFPN to detect ocular and orbital melanomas. Compared to ¹⁸F-FDG, ¹⁸F-PFPN demonstrated higher detection rates for ocular and orbital melanomas and experienced minimal interference from the surrounding tissues. This suggests that ¹⁸F-PFPN may be a promising clinical diagnostic tool for ocular and orbital melanomas, with the potential to distinguish malignant melanomas from benign pigmentation. Future research should aim to verify these results with a larger sample size and explore the potential of ¹⁸F-PFPN to differentiate other pigmentary lesions and their use in adjuvant therapy options.

Supplement

The Supplement is available with this article at https://doi.org/10.3348/kjr.2024.0243.

Availability of Data and Material

The datasets generated or analyzed during the study are

available from the corresponding author on reasonable request.

Conflicts of Interest

The authors have no potential conflicts of interest to disclose.

Author Contributions

Conceptualization: Fagang Jiang, Yang Cheng. Data curation: Yiyan Wang, Xinghua Wang, Jie Zhang. Formal analysis: Yiyan Wang, Xinghua Wang. Methodology: Yiyan Wang, Xinghua Wang, Xiao Zhang. Project administration: Fagang Jiang, Yang Cheng. Supervision: Fagang Jiang, Yang Cheng. Writing—original draft: Yiyan Wang, Xinghua Wang. Writing—review & editing: Yiyan Wang, Xinghua Wang, Fagang Jiang, Yang Cheng.

ORCID IDs

Yiyan Wang https://orcid.org/0009-0003-9551-023X Xinghua Wang https://orcid.org/0000-0002-5608-0607

Fig. 3. A 41-year-old male with choroidal melanoma. **A:** In ¹⁸F-PFPN PET images, the tumor lesion (red box and arrows) can be clearly visualized. The SUV_{max} of ¹⁸F-PFPN at the lesion was 10.6. MR imaging demonstrated an abnormal signal shadow in the lateral wall within the right eyeball, with a high signal on T1-weighted images and a low signal on T2-weighted images. **B:** In ¹⁸F-FDG PET images, the brain and periocular tissues interfered with the visualization of the tumor, which made it difficult to identify the tumor (green box and arrows). The SUV_{max} of ¹⁸F-FDG at the lesion was 4.1. CT demonstrated an abnormal density shadow in the lateral wall within the right eyeball. ¹⁸F-PFPN = ¹⁸F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-(2-fluoroethoxy)ethoxy))ethoxy)) picolinamide, PET = positron emission tomography, SUV_{max} = maximum standardized uptake value, MR = magnetic resonance, ¹⁸F-FDG = ¹⁸F-fluorodeoxyglucose, CT = computed tomography

Jie Zhang

https://orcid.org/0000-0003-2754-9629

Xiao Zhang

https://orcid.org/0000-0002-7305-5278

Yang Cheng

https://orcid.org/0009-0006-1778-0797

Fagang Jiang

https://orcid.org/0009-0005-7715-4993

Funding Statement

None

REFERENCES

- Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Meheus F, et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol 2022;158:495-503
- McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, Chen VW. Incidence of noncutaneous melanomas in the U.S. *Cancer* 2005;103:1000-1007
- Verbeek S, Dalvin LA. Advances in multimodal imaging for diagnosis of pigmented ocular fundus lesions. *Can J Ophthalmol* 2023 Jul 19 [Epub]. https://doi.org/10.1016/

j.jcjo.2023.07.005

- 4. Foti PV, Travali M, Farina R, Palmucci S, Spatola C, Raffaele L, et al. Diagnostic methods and therapeutic options of uveal melanoma with emphasis on MR imaging-Part I: MR imaging with pathologic correlation and technical considerations. *Insights Imaging* 2021;12:66
- Singh AD, Raval V, Wrenn J, Zabor EC. Small choroidal melanoma: outcomes after surveillance versus immediate treatment. *Am J Ophthalmol* 2022;241:47-56
- Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, et al. Advances in PET imaging of cancer. *Nat Rev Cancer* 2023;23:474-490
- Papastefanou VP, Islam S, Szyszko T, Grantham M, Sagoo MS, Cohen VM. Metabolic activity of primary uveal melanoma on PET/CT scan and its relationship with monosomy 3 and other prognostic factors. *Br J Ophthalmol* 2014;98:1659-1665
- Reddy S, Kurli M, Tena LB, Finger PT. PET/CT imaging: detection of choroidal melanoma. Br J Ophthalmol 2005;89:1265-1269
- Freton A, Chin KJ, Raut R, Tena LB, Kivelä T, Finger PT. Initial PET/CT staging for choroidal melanoma: AJCC correlation and second nonocular primaries in 333 patients. *Eur J Ophthalmol* 2012;22:236-243
- 10. Lee CS, Cho A, Lee KS, Lee SC. Association of high metabolic activity measured by positron emission tomography imaging

with poor prognosis of choroidal melanoma. *Br J Ophthalmol* 2011;95:1588-1591

- 11. Stelter L, Evans MJ, Jungbluth AA, Zanzonico P, Ritter G, Ku T, et al. Novel mechanistic insights into arginine deiminase pharmacology suggest 18F-FDG is not suitable to evaluate clinical response in melanoma. *J Nucl Med* 2012;53:281-286
- Xu X, Yuan L, Yin L, Jiang Y, Gai Y, Liu Q, et al. Synthesis and preclinical evaluation of 18F-PEG3-FPN for the detection of metastatic pigmented melanoma. *Mol Pharm* 2017;14:3896-3905
- 13. Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for

melanoma imaging and therapy: preclinical/clinical development and combination with other treatments. *Pharmacol Ther* 2021;224:107829

- 14. Zhang X, Li M, Gai Y, Chen J, Tao J, Yang L, et al. 18F-PFPN PET: a new and attractive imaging modality for patients with malignant melanoma. *J Nucl Med* 2022;63:1537-1543
- Thomas NE, Kricker A, Waxweiler WT, Dillon PM, Busman KJ, From L, et al. Comparison of clinicopathologic features and survival of histopathologically amelanotic and pigmented melanomas: a population-based study. *JAMA Dermatol* 2014;150:1306-1314