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INTRODUCTION

Computed tomography (CT) has a long-standing 
pedigree in musculoskeletal imaging, providing additional 
information compared to conventional radiography for 
almost every conceivable type of pathology, such as 
fractures, degeneration, malignancies, and inflammatory 
conditions [1,2]. However, despite being mostly optimized, 
standard energy-integrating detector (EID) scanners fail 
to adequately address several current pressure points in 
musculoskeletal CT [3].

Pressure Point: Radiation Dose
The added image information in CT studies (e.g., three-
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dimensional visualization of anatomy and quantitative 
image analyses) comes at the cost of an increased radiation 
burden. The demand for CT examinations has steadily 
increased in the 21st century, offsetting continuous efforts 
to optimize acquisition protocols for low-dose imaging. 
Therefore, CT scans remain the most common source of 
medical radiation exposure worldwide [4]. This fact is 
particularly concerning when considering that in a recent 
study, 1.3% of patients in the United States received a 
cumulative radiation dose of ≥ 100 mSv owing to repeated 
CT imaging. Of these individuals, 20% are younger than 50 
years, making them more vulnerable to radiation-induced 
carcinogenesis [5]. In musculoskeletal imaging, many 
patients are young and suffer from sports-related trauma 
or injuries associated with an active lifestyle [6]. However, 
due to the inferior inherent dose efficiency, the radiation-
saving potential of EID-CT—apart from lowering the 
absolute number of examinations—is mostly exhausted at 
present [7].

Pressure Point: Spatial Resolution
As a result of ongoing technical developments such as 

flat-panel detector CT [8], qualitative expectations in 
musculoskeletal imaging have increased substantially in 
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the better part of the 21st century. The first clinical approval 
of a PCCT scanner for use in patients was issued by European 
authorities and the U.S. Food and Drug Administration 
in 2021 [22]. With the detector arguably being the most 
influential piece of hardware in CT imaging, the arrival of the 
first commercially available system using photon-counting 
technology had a major impact on the radiology community. 
While expectations for PCCT are high, the initial phases of 
experimental and clinical research have shown promising 
results in almost every aspect of image generation [23,24]. 
New options for image acquisition and post-processing, high 
geometric dose efficiency and resolution, and ubiquitous 
multi-energy spectral information constitute fascinating 
combinations for musculoskeletal imaging, allowing for 
substantial improvement in patient imaging.

This article intends to explain the technical basics of 
PCCT compared to established EID-CT systems and highlight 
promising use cases for musculoskeletal patient care 
while also considering current restrictions that need to be 
overcome in the future.

Technical Background

In EID-CT, solid-state scintillators convert incoming X-ray 
photons into visible light before the light is transformed 
into electrical energy by photodiodes at the distal end 
of the detector. This two-step conversion process entails 
constructional restrictions such as the use of septa 
between the individual detector elements to prevent optical 
crosstalk. Furthermore, the cumulative signal of all incoming 
photons is registered in each detector element, subsequently 
preventing the readout of individual photon information 
[25]. Regarding spectral imaging, several vendor-specific 
concepts exist for EID-CT, including prospective (e.g., 
fast kV switching, dual-source, and split-filter imaging) 
and retrospective techniques (i.e., dual-layer or sandwich 
detector dual-energy CT) [26]. Although each approach 
possesses strengths and weaknesses, a common limitation 
lies in the scintillator-based two-step process required for 
energy integration [27].

Photon-counting detectors on the other hand are 
considered “energy-resolving,” relying on semiconductor 
materials to perform a single-step conversion process from 
incoming photon to electric pulse [28]. Because pulses 
are registered only if they exceed a predefined energy 
threshold, low-level electronic noise can be effectively 
eliminated (Fig. 1) [29]. By further increasing the 

recent years. Currently, a standard-resolution examination 
will likely not satisfy the high demands of trauma surgeons 
and orthopedists regarding the delineation of trabecular 
bone microarchitecture [9]. Simultaneously, large portions 
of the anatomy are expected to be covered within the scan 
volume so that various differential diagnoses and injury 
patterns can be evaluated in a single examination [10]. With 
current EID-CT scanners requiring filter-based narrowing 
of the detector aperture to perform examinations in ultra-
high-resolution (UHR) scan mode, the applicability of this 
technique for low-dose imaging tasks and/or larger scan 
volumes is considerably limited [11-13].

Pressure Point: Metal Artifacts
Postoperative imaging remains a challenging task for 

radiologists in every modality owing to characteristic 
artifacts usually being most pronounced in the area of 
interest, that is, adjacent to the bone-metal interface [14]. 
To diagnose or rule out implant failure, screw dislocation, 
or periprosthetic fractures, these anatomical areas must be 
visualized without significant image impairment. Despite 
the introduction of iterative metal artifact reduction 
(MAR) and other post-processing features, such as virtual 
monoenergetic imaging (VMI) in more advanced EID-
CT scanners, challenges such as beam hardening, photon 
starvation, and noise amplification persist [15-17].

Pressure Point: Spectral Imaging
With the introduction of dual-energy CT, a plethora of 

new imaging tasks have been added to the CT portfolio. 
Most notably, the characteristic attenuation of different 
tissues at high and low kilovoltage levels can be used for 
material decomposition, for example, to differentiate crystal 
arthropathies such as gout and calcium pyrophosphate 
dihydrate deposition disease [18]. Post-processing of spectral 
data can also be employed to subtract the mineralized 
bone in virtual non-calcium images (VNCa), allowing for the 
detection of bone marrow edema (“bone bruise”) [19] or 
malignant bone marrow infiltration, e.g., in patients with 
multiple myeloma [20]. Despite improved spectral separation 
with newer generations of EID-CT systems, the inability 
to differentiate between two materials with very similar 
attenuation properties (e.g., blood and water) or generally 
within the same voxel remains a problem [21].

Is Photon-Counting CT the Solution?
Photon-counting CT (PCCT) has been in development for 
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geometric dose efficiency, that is, the effectiveness of the 
detector in capturing applied radiation doses and converting 
them into image information, the detector cells are defined 
by the electric field between the common cathode and 
the pixelated anode, rendering the use of optical septa 
obsolete [30]. Although only one cadmium-telluride-
based PCCT system was commercially available for clinical 
patient care at the time of this writing, several scanner 
prototypes employing different semiconductor materials, 
such as silicone or cadmium zinc telluride, have been used 
in preclinical research with promising results [31,32].

Radiation Dose Reduction

A plethora of dose reduction concepts have been 
proposed for EID-CT in recent decades, such as automated 
tube voltage selection [33], sector- or organ-based tube 
current modulation [34], adaptive collimation [35], camera-
based patient positioning [36], and spectral shaping via 
tin prefiltration [37], just to name a few. While these 
concepts have been integrated into a first-generation dual-
source PCCT system approved for clinical imaging (Naeotom 
Alpha, Siemens Healthineers, Forchheim, Germany), 
the constructional superiority of the detector itself sets 
PCCT apart from EID-CT scanners in prior generations. 
Demonstrated for a wide range of clinical applications, PCCT 

allows for a considerable reduction in radiation exposure 
compared to EID-CT when maintaining a constant image 
quality [38,39] or superior image quality when matching the 
radiation dose [40,41]. There are several potential reasons 
for generating better images with lower doses, with the 
reduction in image noise and subsequent improvement in 
signal-to-noise and contrast-to-noise ratios being among the 
most striking. Notably, the inherent advantage of PCCT is 
dose-dependent, exhibiting greater benefits at lower doses 
[42]. This effect is particularly evident in musculoskeletal 
imaging, where the use of sharp convolution kernels results 
in an increased level of image noise [43]. By acquiring 
spectral data based on a hardened kilovoltage spectrum 
in combination with an inherent elimination of electronic 
noise, PCCT facilitates superior image quality, particularly in 
obese patients [44].

For examination of the appendicular skeleton, cone-beam CT 
with a specialized scanner architecture has been increasingly 
used in recent years [45,46]. However, for imaging of the 
radiation-sensitive body trunk, a gantry-based setup, such as 
the one used in PCCT, is still considered the standard of care 
[22]. Particularly for scans of the axial skeleton and large 
joints, the advent of PCCT offers a compelling combination 
of advantages [47,48].

Fig. 1. Standard-resolution whole-body low-dose CT scans with EID (A) and photon-counting detector (B) technology depict two 
osteolytic lesions in the left iliac bone (arrows) of a 69-year-old male with multiple myeloma. Note the substantially higher image noise 
level in EID-CT despite comparable acquisition and reconstruction settings. EID = energy-integrating detector, PCCT = photon-counting 
computed tomography
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Spatial Resolution Improvement

The dose reduction potential of PCCT is most pronounced 
when scanning in UHR mode, which is used extensively 
in musculoskeletal imaging [11,49,50]. With conventional 
EID-CT, positioning a comb or grid filter in front of the 
detector array is necessary to narrow the pixel aperture for 
UHR scans [51]. While this method effectively improves 
spatial resolution, the setup has two major drawbacks. 
First, X-ray photons that have already passed through the 
patient do not contribute to image generation. While only 
54% of X-ray quanta pass through a comb filter, the relative 
number is even smaller in grid-filter-based EID-CT (34%) 
[52]. Owing to their different builds, PCCT detectors do not 
rely on comb or grid filters to generate UHR data (Fig. 2). 
Instead, independence from interpixel septa allows for the 
design of smaller pixels, which can be read out separately 
in UHR mode or with 2 x 2 pixel binning for standard-
resolution imaging [3]. Second, the maximum scan volume 
is significantly limited in UHR-EID-CT; hence, only smaller 
anatomical regions can be examined with a high spatial 
resolution. Whereas the detector collimation for UHR mode 
in EID-CT typically ranges between 0.6–16 x 0.6 mm [52], 
the collimation for UHR-PCCT is 120 x 0.2 mm, constituting 
a substantial increase in collimation width [53].

Notably, the thinnest achievable slice thickness on 
UHR-EID-CT is matched by standard-resolution PCCT [41]. 
While a higher spatial resolution in z-direction may be 
particularly advantageous in hand or foot imaging owing to 
the minuscule size of the anatomical components and their 
intercompartmental dependency to provide biomechanical 
stability, larger joints, such as the shoulder or hip, also 
benefit from PCCT examinations in UHR mode with a 
minimum slice thickness of 0.2 mm [12,47,50]. Allowing 
for a larger image matrix of 10242 pixels with the current 
configuration of the dual-source scanner, the PCCT scanner 
automatically selects an appropriate matrix size depending 
on the chosen field of view and convolution kernel [54-56].

Compared to standard PCCT imaging, UHR-PCCT displayed 
a significant reduction in image noise owing to the smaller 
pixel size in the fan direction (Fig. 3). Assuming an identical 
radiation dose, a scan mode with smaller detector pixels 
will allow for better spatial resolution, albeit at the cost of 
higher image noise, when the data are reconstructed with 
the maximum resolution. However, when the data from both 
scan modes are reconstructed with the same resolution 
(below the limit of each mode), the UHR noise level is lower 
than that of the standard resolution mode. This so-called 
“small pixel effect” can be used either for dose reduction 
or higher spatial resolution, depending on the selected 

Fig. 2. A 29-year-old male was involved in a motorcycle accident, suffering a displaced multi-fragment injury of his left lower leg. A, B: 
UHR-PCCT at 140 kVp (B) allows for superior discrimination of bone microarchitecture (arrowheads) and callus formation over time (arrows) 
compared with standard-resolution EID-CT at 150 kVp (A). Notably, UHR mode was not available for the initial EID-CT scan owing to the 
size of the requested scan volume. UHR = ultra-high-resolution, PCCT = photon-counting computed tomography, EID = energy-integrating 
detector
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convolution kernel [57-59]. However, several drawbacks of 
UHR-PCCT must be acknowledged. First, the maximum tube 
output is reduced to prevent anode damage because of the 
small focal spot [3]. Second, the raw data file sizes increase 
significantly when scanning in UHR mode [60]. Third, 
reconstruction times are longer, potentially affecting clinical 
workflow and patient throughput [61].

Metal Artifact Reduction

Irrespective of detector design, most modern CT scanners 
employ similar principles to reduce metal artifacts. One 
widely established technique is to increase the tube voltage, 
for example, from 100 to 140 kVp. The resulting artifact 
reduction can be amplified by further hardening of the X-ray 
spectrum through additional prefiltration [39]. Depending 
on the system manufacturer, either a pre-patient silver 
or tin filter is utilized for this purpose, absorbing low-
energy photons before they pass through the patient and 
contribute to the radiation dose. Regarding filter/voltage 

combinations, smaller modifications have been implemented 
from one scanner generation to another; in third-generation 
dual-source EID-CT, spectral shaping relies on a 0.6 mm tin 
filter for examinations up to 150 kVp [62]. In contrast, the 
current dual-source PCCT system employs a 0.4 mm tin filter 
for beam hardening at either 100 or 140 kVp [63]. Although 
prefiltration allows reliable artifact reduction, this setup 
also results in a perceptible loss of image contrast [64]. 
Therefore, artificially hardened spectra should not be used 
in combination with iodine contrast agents; otherwise, this 
technique has no major restrictions.

A second effective approach to reducing metal artifacts is 
the use of dedicated postprocessing algorithms, which yield 
good results in the latest generation of EID-CT scanners 
[62]. Despite not being optimized for photon-counting 
data, iterative MAR has shown promise in PCCT for various 
types of implants, irrespective of the selected acquisition 
protocol [65,66]. However, with the current software, 
MAR postprocessing cannot be combined with a spatial 
frequency higher than 7.3 line pairs per centimeter at 50% 

Fig. 3. Magnified side-by-side comparison of the trabecular microarchitecture in the third lumbar vertebra of a cadaveric specimen. A, B: 
Standard-resolution (A) and UHR-PCCT data (B) acquired at 140 kVp were reconstructed with the sharpest convolution kernel available 
for both scan modes. The small pixel effect facilitates a considerable noise reduction in UHR images, which can be used to lower the 
radiation dose. UHR = ultra-high-resolution, PCCT = photon-counting computed tomography
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of the modulation transfer function (Br56 kernel; Siemens 
Healthineers) [14], which is far from the image sharpness 
expected from UHR imaging.

Another promising technique for reducing the extent 
of hyperdense and hypodense artifacts in postoperative 
assessments following osteosynthesis is VMI. Based on 
the acquisition of dual- or polyenergetic data, specific 
postprocessing allows for the reconstruction of separate 
image stacks with information from a single portion of 
the energy spectrum [67]. Because every PCCT scan (even 
when acquired with tin prefiltration) allows for spectral 
postprocessing, VMI is now applicable to an even wider 
range of imaging tasks, for example, Sn 140 kVp acquisitions. 
As previously shown for a multitude of implants and metallic 
devices in EID-CT, the use of high-keV levels is especially 
effective for artifact reduction [16]. However, similar to 
iterative MAR, VMI cannot be combined with ultrasharp 
reconstruction kernels with a spatial frequency above 16.5 
line pairs per cm at 50% of the modulation transfer function 
[14]. Although both VMI and MAR can be applied to a 
dataset synergistically, restricted image sharpness limits the 
number of use cases for this powerful artifact reduction tool 
(Fig. 4) [66].

Multi-Energy and Spectral Imaging 
Improvement

Numerous dual-energy CT systems based on conventional 
EID technology are available from various vendors. These 
scanners typically derive spectral information from individual 
datasets obtained from two spectra. For example, in dual-
source scanners, two X-ray tubes operate simultaneously, 
one at a low voltage (usually 70–100 kVp) and the other 
at a high voltage (140 kVp or Sn 150 kVp), to achieve 
sufficient separation of the X-ray spectra, thereby enhancing 
the accuracy of dual-energy postprocessing [68]. However, 
the dual-source setup also limits the dual-energy field of 
view because the spectral information is only available 
within the overlap of both X-ray beams [69]. Furthermore, 
this scan option must be selected before the examination 
commences. In contrast, one key strength of PCCT is 
its ability to generate polyenergetic data in every scan; 
therefore, the acquisition of spectral image information can 
now be considered a part of the clinical routine [70]. While 
VMI reconstructions are subject to personal preferences 
and modifiable for specific needs, their main application in 
musculoskeletal imaging lies arguably in the amplification 
of contrast (low keV), and the reduction of noise and 

Fig. 4. UHR-PCCT elbow scan with tin prefiltration at 140 kVp in a 66-year-old female after radial head replacement. A, B: Whereas the 
combination of virtual monoenergetic imaging at 110 keV and MAR postprocessing allows for superior artifact reduction (A), the limited 
reconstruction sharpness hampers diagnostic assessability. Meanwhile, the use of an ultra-sharp bone kernel for polychromatic data 
facilitates better visualization of osseous tissue albeit at the cost of increased artifact intensity at the bone-metal interface (B). UHR = 
ultra-high-resolution, PCCT = photon-counting computed tomography, MAR = metal artifact reduction
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artifacts (high keV). The acquisition of spectral data at a 
relatively high tube voltage of 120 or 140 kVp constitutes 
another advantage of PCCT over EID-CT. Because the latter 
relies on acquisition at higher and lower tube voltages, 
image quality and spectral postprocessing may be limited 
to a certain degree in obese patients [71]. In contrast, the 
harder spectrum in PCCT contributes to a lower noise level 
and artifact intensity, both of which potentially aid material 
decomposition.

Multiple use cases of spectral CT in musculoskeletal 
radiology have been discussed since the first EID-based 
dual-energy system was introduced; however, none have 
been considered more promising than functional bone 
marrow imaging [72]. Because a VNCa option will soon 
become available for PCCT, the option to analyze bone 
bruise in UHR examinations may change the assessment of 
traumatic injuries in routine clinical practice. With the only 
commercially available PCCT scanner being a dual-source 
system, there is also the potential to operate both tubes 
with different X-ray spectra, which may provide additional 
benefits regarding spectral separation over a wide kVp range. 
Currently, the full range of spectral postprocessing options in 
PCCT is difficult to predict, and there may be use cases other 
than those already established for EID-CT when all features 
are made accessible. One promising application is improved 
subtraction of contrast agents injected into the articular 
cavity for direct CT arthrography [73]. By combining soft 
tissue information with a higher spatial resolution than 
that in EID-CT, short scan times, and the option to generate 
unimpaired 3D models of fracture patterns for preoperative 
planning, UHR-PCCT arthrography may have the potential to 
become the new gold standard for joint imaging (Fig. 5) [43]. 

Regarding oncological musculoskeletal imaging, the 
advantages of PCCT-VNCa for bone bruise mapping may also 
aid in the diagnosis of malignant bone marrow infiltration, 
such as in patients with multiple myeloma [70,74,75]. 
Another novel use case for differentiating solid tumors may 
lie in the separation of different contrast agents, which is 
neither reliably feasible on grayscale images nor in dual-
energy EID-CT [76]. Whether multi- and single-material 
maps derived from polycontrast PCCT data are truly capable 
of revolutionizing diagnostic assessment in musculoskeletal 
oncology remains to be seen, though.

Current Technical Limitations and Outlook

Since the introduction of the first clinical PCCT scanner 
in 2021, numerous studies have praised its improved image 
quality, potential for radiation dose reduction, and superior 
contrast attenuation [9,11,39,40]. The latter has had a 
significant impact on cardiovascular imaging, resulting in 
novel scan protocols with considerably lower contrast agent 
volumes [77]. Meanwhile, musculoskeletal radiologists are 
anxiously awaiting their next PCCT-related “breakthrough 
moment,” which should come with the emergence of new 
spectral postprocessing features, such as bone marrow 
imaging. Thus, the first major articles on functional PCCT 
imaging are likely to be published in 2024. These studies 
will hopefully investigate the clinical impact of PCCT on 
treatment decision-making in musculoskeletal conditions, 
an aspect that is severely underrepresented in the photon-
counting literature.

As the potential for an even higher spatial resolution 
remains unclear, one may expect that the current UHR 

Fig. 5. UHR-PCCT arthrography of the left ankle of a 58-year-old female. A-C: While the articular injection of iodine-based contrast agent 
aids the depiction of minute cartilage injuries of the talus bone (arrows) and distal tibia (arrowhead), the virtual subtraction of contrast 
material may be helpful when generating three-dimensional models for preoperative planning. UHR = ultra-high-resolution, PCCT = 
photon-counting computed tomography
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mode could become the standard in the future, assuming 
that data connectivity and processing time restrictions are 
overcome. In musculoskeletal imaging, this development 
would certainly be welcomed with open arms. Although 
reconstruction sharpness remains a concern for MAR and 
VMI, especially in small bone and joint imaging [14,66], this 
problem may also be solved with future software updates. 
Whether PCCT scanners from other vendors will receive 
clinical approval in the near future remains a subject of 
speculation. However, one may assume that the parallel 
availability of multiple photon-counting concepts would 
not be disadvantageous to radiologists or patients. Ongoing 
preclinical studies have explored the use of alternative 
contrast agents (e.g., bismuth); however, the actual clinical 
benefits are not yet foreseeable [78,79]. 

Despite these limitations, the technological leap through 
PCCT has been substantial, paralleled only by the increased 
demand placed on users. Not only do technologists need to 
acclimate to the new hardware and myriad postprocessing 
options, but radiologists must also engage with the 
examination protocols. Photon-counting scanners permit 
an almost infinite number of modifications to precisely 
tailor the scan and reconstruction settings to individual 
requirements of image quality and radiation dosage 
[80]. Particularly in musculoskeletal radiology, where 
clinical colleagues are frequently involved in the reading 
process, close collaboration between trauma surgeons 
and orthopedists is essential to ensure optimal imaging 
results. However, the challenge posed by the system 
extends beyond image acquisition, as it also encompasses 
the reconstruction and archiving of vast amounts of data, 
necessitating deliberate and conscious engagement.

Summary

PCCT represents a pivotal advancement for radiology in 
general, and for musculoskeletal radiology in particular. 
Offering crucial advantages in terms of spatial resolution 
and dose efficiency, almost every imaging task benefits 
from using a photon-counting detector. With a range of new 
postprocessing options becoming accessible in the near 
future, PCCT scanners are poised to revolutionize functional 
imaging and provide ubiquitous spectral information, even 
during UHR examinations. Overall, the trajectory is clear; 
conventional EID-based CT systems are gradually making way 
for a new detector technology to take center stage. 
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