DOI QR코드

DOI QR Code

Tuning the surface charge of mixed matrix membranes using novel chemistry

  • Priyanka Mistry (Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda) ;
  • C.N. Murthy (Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda)
  • Received : 2024.05.27
  • Accepted : 2024.07.24
  • Published : 2024.07.25

Abstract

Mixed matrix membranes have gained significant recognition in the wastewater treatment industry for their effectiveness in removing dyes, proteins, and heavy metals from water sources. Researchers have developed an innovative technique to enhance properties of these membranes by incorporating amine-functionalized carbon nanotubes into the polymer matrix. This approach introduces amine functional groups onto the membrane surface, which are then modified with trimesoyl chloride and cyanuric chloride. The modified membranes are characterized by XPS to confirm successful bonding of amines with the trimesoyl chloride and cyanuric chloride. The surface charge of the modified membrane also plays a role in the modification process; the membrane modified with trimesoyl chloride has a negative surface charge, while the one modified with cyanuric chloride has a more positive charge. At the same acidic pH, the positive or negative charge of the mixed matrix membranes assists in enhancing the rejection of heavy metals. This results in improved antifouling properties for both modified membranes. The heavy metal rejection for all modified membranes is higher than for unmodified membranes, due to both adsorption and complexation abilities of the functional groups on the membrane surface with heavy metal ions. As the membrane surface functionalities increase through modification, the separation due to complexation also increases. The bulk morphology of the membrane remains unchanged, while roughness slightly increases due to the surface treatment.

Keywords

Acknowledgement

The authors acknowledge to SHODH-ScHeme Of Developing High quality research, Education Department, Gujarat State, for their valuable support throughout the course of this study.

References

  1. Abedi, F., Dube, M.A., Kruczek, B. (2023), "Adsorption of heavy metals on the surface of nanofiltration membranes: "A curse or blessing"?", J. Membr. Sci., 685, 121988. https://doi.org/10.1016/j.memsci.2023.121988.
  2. Agarwal, C., Das, S., Pandey, A.K. (2022), "Study on pore size distributions of microporous polymer membranes having different physical architecture using capillary flow porometry", Mater. Today Chem., 23, 100652. https://doi.org/10.1016/j.mtchem.2021.100652.
  3. Alotaibi, A.A., Shukla, A.K., Mrad, M.H., Alswieleh, A.M., Alotaibi, K.M., (2021), "Fabrication of polysulfone-surface functionalized mesoporous silica nanocomposite membranes for removal of heavy metal ions from wastewater", Membranes, 11, 935. https://doi.org/10.3390/membranes11120935.
  4. Al-Rashdi, B.A.M., Johnson, D.J., Hilal, N. (2013), "Removal of heavy metal ions by nanofiltration", Desalination, 315, 2-17. https://doi.org/10.1016/j.desal.2012.05.022.
  5. Banerjee, R., Pace, N.J., Brown, D.R., Weerapana, E. (2013), "1,3,5-Triazine as a Modular Scaffold for Covalent Inhibitors with Streamlined Target Identification", J. Am. Chem. Soc., 135, 2497-2500. https://doi.org/10.1021/ja400427e.
  6. Bera, A., Trivedi, J.S., Jewrajka, S.K., Ghosh, P.K. (2016), "In situ manipulation of properties and performance of polyethyleneimine nanofiltration membranes by polyethylenimine-dextran conjugate", J. Membr. Sci., 519, 64-76. https://doi.org/10.1016/j.memsci.2016.07.038.
  7. Briffa, J., Sinagra, E., Blundell, R. (2020), "Heavy metal pollution in the environment and their toxicological effects on humans", Heliyon, 6, e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.
  8. Carrascal, M., Sanchez-Jimenez, E., Fang, J., Perez-Lopez, C., Ginebreda, A., Barcelo, D., Abian, J. (2023), "Sewage protein information mining: Discovery of large biomolecules as biomarkers of population and industrial activities", Environ. Sci. Technol., 57, 10929-10939. https://doi.org/10.1021/acs.est.3c00535.
  9. Chandrashekhar Nayak, M., Isloor, A.M., Inamuddin, Lakshmi, B., Marwani, H.M., Khan, I. (2020), "Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions", Arab. J. Chem., 13, 4661-4672. https://doi.org/10.1016/j.arabjc.2019.10.007.
  10. Chen, T., Li, W.Q., Hu, W.B., Hu, W.J., Liu, Y.A., Yang, H., Wen, K. (2019), "Direct synthesis of covalent triazine-based frameworks (CTFs) through aromatic nucleophilic substitution reactions", RSC Adv., 9, 18008-18012. https://doi.org/10.1039/C9RA02934F.
  11. Corpuz, M.V.A., Buonerba, A., Vigliotta, G., Zarra, T., Ballesteros, F., Campiglia, P., Belgiorno, V., Korshin, G., Naddeo, V. (2020), "Viruses in wastewater: occurrence, abundance and detection methods", Sci. Total Environ., 745, 140910. https://doi.org/10.1016/j.scitotenv.2020.140910.
  12. Dalwani, M., Bargeman, G., Hosseiny, S.S., Boerrigter, M., Wessling, M., Benes, N.E. (2011), "Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media", J. Membr. Sci., 381, 81-89. https://doi.org/10.1016/j.memsci.2011.07.018.
  13. Dalwani, M., Benes, N.E., Bargeman, G., Stamatialis, D., Wessling, M. (2011), "Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes", J. Membr. Sci., 372, 228-238. https://doi.org/10.1016/j.memsci.2011.02.012.
  14. Damiri, F., Andra, S., Kommineni, N., Balu, S.K., Bulusu, R., Boseila, A.A., Akamo, D.O., Ahmad, Z., Khan, F.S., Rahman, Md.H., Berrada, M., Cavalu, S. (2022) "Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: A comprehensive review", Materials, 15, 5392. https://doi.org/10.3390/ma15155392.
  15. Demeshko, S., Leibeling, G., Dechert, S., Meyer, F. (2004), "1,3,5-Triazine-based tricopper(ii) complexes: structure and magnetic properties of threefold-symmetric building blocks", Dalton Trans., 21, 3782. https://doi.org/10.1039/b407598f.
  16. Deng, L., Li, S., Qin, Y., Zhang, L., Chen, H., Chang, Z., Hu, Y. (2021), "Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneeimine followed by zwitterionic modification", J. Membr. Sci., 619, 118564. https://doi.org/10.1016/j.memsci.2020.118564.
  17. Dong, X., Lu, D., Harris, T.A.L., Escobar, I.C. (2021), "Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development", Membranes, 11, 309. https://doi.org/10.3390/membranes11050309.
  18. Dwight, D.W., Fabish, T.J., Thomas, H.R. (1981), Photon, Electron, and Ion Probes of Polymer Structure and Properties, ACS Symposium Series, American Chemical Society, Washington, D.C., U.S.A. https://doi.org/10.1021/bk-1981-0162.
  19. Elshof, M.G., Maaskant, E., Hempenius, M.A., Benes, N.E. (2021), "Poly(aryl cyanurate)-based thin-film composite nanofiltration membranes", ACS Appl. Polym. Mater., 3, 2385-2392. https://doi.org/10.1021/acsapm.0c01366.
  20. Farahbakhsh, J., Vatanpour, V., Khoshnam, M., Zargar, M. (2021), "Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review", React. Funct. Polym., 166, 105015. https://doi.org/10.1016/j.reactfunctpolym.2021.105015.
  21. Gholami, F., Asadi, A., Zinatizadeh, A.A. (2022), "Efficient heavy metals and salts rejection using a novel modified polysulfone nanofiltration membrane", Appl. Water Sci., 12, 146. https://doi.org/10.1007/s13201-022-01671-x.
  22. Gholami, S., Llacuna, J.L., Vatanpour, V., Dehqan, A., Paziresh, S., Cortina, J.L. (2022), "Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment", Chemosphere, 294, 133699. https://doi.org/10.1016/j.chemosphere.2022.133699.
  23. Ghosh, A.K., Jeong, B.H., Huang, X., Hoek, E.M.V. (2008) "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34-45. https://doi.org/10.1016/j.memsci.2007.11.038.
  24. Gupta, S., Bhatiya, D., Murthy, C.N. (2015), "Metal removal studies by composite membrane of polysulfone and functionalized single-walled carbon nanotubes", Sep. Sci. Technol., 50, 421-429. https://doi.org/10.1080/01496395.2014.973516.
  25. Hebbar, R.S., Isloor, A.M., Prabhu, B., Inamuddin, Asiri, A.M., Ismail, A.F. (2018), "Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay", Sci Rep., 8, 4665. https://doi.org/10.1038/s41598-018-22837-1.
  26. Ibrahim, S., Mohammadi Ghaleni, M., Isloor, A.M., Bavarian, M., Nejati, S. (2020), "Poly(homopiperazine-amide) thin-film composite membrane for nanofiltration of heavy metal ions", ACS Omega, 5, 28749-28759. https://doi.org/10.1021/acsomega.0c04064.
  27. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014), "Toxicity, mechanism and health effects of some heavy metals", Interdiscipl. Toxicol., 7, 60-72. https://doi.org/10.2478/intox-2014-0009.
  28. Jiang, Z., Miao, J., He, Y., Hong, X., Tu, K., Wang, X., Chen, S., Yang, H., Zhang, L., Zhang, R. (2019), "A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance", RSC Adv., 9, 37546-37555. https://doi.org/10.1039/C9RA06528H.
  29. Kang, G., Liu, M., Lin, B., Cao, Y., Yuan, Q. (2007), "A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol)", Polymer, 48, 1165-1170. https://doi.org/10.1016/j.polymer.2006.12.046.
  30. Klangwart, N., Ruijs, C., Hawes, C.S., Gunnlaugsson, T., Kotova, O. (2022), "Tripodal 1,3,5-benzenetricarboxamide ligand with dipicolinic acid units and its binding with Eu(III) ions", Supramol. Chem., 34, 10-19. https://doi.org/10.1080/10610278.2023.2177162.
  31. Kumar, M., Seth, A., Singh, A.K., Rajput, M.S., Sikandar, M. (2021), "Remediation strategies for heavy metals contaminated ecosystem: A review", Environ. Sust. Indicat., 12, 100155. https://doi.org/10.1016/j.indic.2021.100155.
  32. Lee, K.P., Bargeman, G., De Rooij, R., Kemperman, A.J.B., Benes, N.E. (2017), "Interfacial polymerization of cyanuric chloride and monomeric amines: pH resistant thin film composite polyamine nanofiltration membranes", J. Membr. Sci., 523, 487-496. https://doi.org/10.1016/j.memsci.2016.10.012.
  33. Lee, K.P., Zheng, J., Bargeman, G., Kemperman, A.J.B., Benes, N.E. (2015), "pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation", J. Membr. Sci., 478, 75-84. https://doi.org/10.1016/j.memsci.2014.12.045.
  34. Li, F., Meng, J., Ye, J., Yang, B., Tian, Q., Deng, C. (2014), "Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: Morphology, stability, and anti-fouling", Desalination, 344, 422-430. https://doi.org/10.1016/j.desal.2014.04.011.
  35. Li, M., Zhang, W., Zhang, X., Guo, H., Liang, Y. (2023), "Recent advanced development of acid-resistant thin-film composite nanofiltration membrane preparation and separation performance in acidic environments", Separations, 10, 20. https://doi.org/10.3390/separations10010020.
  36. Liu, M., Zheng, Y., Shuai, S., Zhou, Q., Yu, S., Gao, C. (2012), "Thin-film composite membrane formed by interfacial polymerization of polyvinylamine (PVAm) and trimesoyl chloride (TMC) for nanofiltration", Desalination, 288, 98-107. https://doi.org/10.1016/j.desal.2011.12.018.
  37. Mahmoud, A.E.D., Mostafa, E. (2023), "Nanofiltration membranes for the removal of heavy metals from aqueous solutions: preparations and applications", Membranes, 13, 789. https://doi.org/10.3390/membranes13090789.
  38. Maxim, C., Matni, A., Geoffroy, M., Andruh, M., Hearns, N.G.R., Clerac, R., Avarvari, N. (2010), "C3 symmetric tris (phosphonate)-1,3,5-triazine ligand: homopolymetallic complexes and its radical anion", New J. Chem., 34, 2319. https://doi.org/10.1039/c0nj00204f.
  39. McCoy, B.J. (1995), "Membrane sieving of a continuous polydisperse mixture through distributed pores", Sep. Sci. Technol., 30, 487-507. https://doi.org/10.1080/01496399508225606.
  40. Mistry, P., Murthy, C.N. (2023), "Positively charged polysulfone and polyether sulfone mixed matrix membranes modified with polyethylenimine: Enhancing heavy metal rejection and antifouling properties", ACS EST Water, 3, 4168-4182. https://doi.org/10.1021/acsestwater.3c00585.
  41. Mistry, P., Nikita, K., Aswal, V.K., Kumar, S., Murthy, C.N. (2023), "Modification of surface characteristics of functionalized multi-walled carbon nanotubes containing mixed matrix membrane using click chemistry", Desal. Water Treat., 295, 42-51. https://doi.org/10.5004/dwt.2023.29589.
  42. Nikita, K., Karkare, P., Ray, D., Aswal, V.K., Singh, P.S., Murthy, C.N. (2019), "Understanding the morphology of MWCNT/PES mixed-matrix membranes using SANS: interpretation and rejection performance", Appl Water Sci., 9, 154. https://doi.org/10.1007/s13201-019-1035-4.
  43. Nikita, K., Kumar, S., Aswal, V.K., Kanchan, D.K., Murthy, C.N. (2019), "Porous structure studies of the mixed-matrix polymeric membranes of polyether sulfone incorporated with functionalized multiwalled carbon nanotubes", Desal. Water Treat., 146, 29-38. https://doi.org/10.5004/dwt.2019.23624.
  44. Nikita, K., Ray, D., Aswal, V.K., Murthy, C.N. (2020), "Surface modification of functionalized multiwalled carbon nanotubes containing mixed matrix membrane using click chemistry", J. Membr. Sci., 596, 117710. https://doi.org/10.1016/j.memsci.2019.117710.
  45. Nikita, K., Swetha, D.C., Murthy, C.N. (2022), "Uniquely modified polyethersulphone and f-CNTs mixed matrix membranes for enhanced water transport and reduced biofouling", Desal. Water Treat., 245, 16-34. https://doi.org/10.5004/dwt.2022.27980.
  46. Pandey, R.P., Ouda, M., Abdul Rasheed, P., Banat, F., Hasan, S.W. (2022), "Surface decoration of bis-aminosilane crosslinked multiwall carbon nanotube ultrafiltration membrane for fast and efficient heavy metal removal", NPJ Clean Water, 5, 44. https://doi.org/10.1038/s41545-022-00189-8.
  47. Qasem, N.A.A., Mohammed, R.H., Lawal, D.U. (2021), "Removal of heavy metal ions from wastewater: a comprehensive and critical review", NPJ Clean Water, 4, 1-15. https://doi.org/10.1038/s41545-021-00127-0.
  48. Rana, D., Matsuura, T. (2010), "Surface modifications for antifouling membranes", Chem. Rev., 110, 2448-2471. https://doi.org/10.1021/cr800208y.
  49. Samavati, Z., Samavati, A., Goh, P.S., Fauzi Ismail, A., Sohaimi Abdullah, M. (2023), "A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater", Chem. Eng. Res. Des., 189, 530-571. https://doi.org/10.1016/j.cherd.2022.11.042.
  50. Shah, P., Murthy, C.N. (2013), "Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal", J. Membr. Sci., 437, 90-98. https://doi.org/10.1016/j.memsci.2013.02.042.
  51. Sianipar, M., Hyun Kim, S., Khoiruddin, Iskandar, F., Gede Wenten, I. (2017), "Functionalized carbon nanotube (CNT) membrane: Progress and challenges", RSC Adv., 7, 51175-51198. https://doi.org/10.1039/C7RA08570B.
  52. Tan, X., Rodrigue, D. (2019), "A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride)", Polymers, 11, 1160. https://doi.org/10.3390/polym11071160.
  53. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2012), "Heavy metals toxicity and the environment", EXS, 101, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6.
  54. Upadhyaya, L., Qian, X., Ranil Wickramasinghe, S. (2018), "Chemical modification of membrane surface - overview", Curr. Opin. Chem. Eng., 20, 13-18. https://doi.org/10.1016/j.coche.2018.01.002.
  55. Wang, H., Zheng, L., Yuan, B., Guo, S., Yuan, C. (2023), "How polyvinyl alcohol-based interlayers affect the performance of polyamide nanofiltration membranes prepared by polyethyleneimine", Sep. Sci. Technol., 58, 2369-2382. https://doi.org/10.1080/01496395.2023.2255737.
  56. Wang, L.Y., Wang, M.J. (2016), "Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method", ACS Sust. Chem. Eng., 4, 2830-2837. https://doi.org/10.1021/acssuschemeng.6b00336.
  57. Wietzke, R., Mazzanti, M., Latour, J.M., Pecaut, J. (1999), "Crystal structure and solution fluxionality of lanthanide complexes of 2,4,6,-Tris-2-pyridyl-1,3,5-triazine", Inorg. Chem., 38, 3581-3585. https://doi.org/10.1021/ic990122w.
  58. Wu, H., Li, X., Zhao, C., Shen, X., Jiang, Z., Wang, X. (2013), "Chitosan/sulfonated polyethersulfone-polyethersulfone (CS/SPES-PES) composite membranes for pervaporative dehydration of ethanol", Ind. Eng. Chem. Res., 52, 5772-5780. https://doi.org/10.1021/ie303437r.
  59. Wu, X.M., Wang, L.L., Wang, Y., Gu, J.S., Yu, H.Y. (2012), "Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry", J. Membr. Sci., 421-422, 60-68. https://doi.org/10.1016/j.memsci.2012.06.033.
  60. Xie, H., Saito, T., Hickner, M.A. (2011), "Zeta potential of ion-conductive membranes by streaming current measurements", Langmuir, 27, 4721-4727. https://doi.org/10.1021/la105120f.
  61. Zhang, R., Yu, S., Shi, W., Wang, W., Wang, X., Zhang, Z., Li, L., Zhang, B., Bao, X. (2017), "A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4‑dimethylaminopyridine (DMAP)", J. Membr. Sci., 542, 68-80. https://doi.org/10.1016/j.memsci.2017.07.054.
  62. Zhou, C., Shi, Y., Sun, C., Yu, S., Liu, M., Gao, C. (2014), "Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration", J. Membr. Sci., 471, 381-391. https://doi.org/10.1016/j.memsci.2014.08.033.