Acknowledgement
The authors acknowledge to SHODH-ScHeme Of Developing High quality research, Education Department, Gujarat State, for their valuable support throughout the course of this study.
References
- Abedi, F., Dube, M.A., Kruczek, B. (2023), "Adsorption of heavy metals on the surface of nanofiltration membranes: "A curse or blessing"?", J. Membr. Sci., 685, 121988. https://doi.org/10.1016/j.memsci.2023.121988.
- Agarwal, C., Das, S., Pandey, A.K. (2022), "Study on pore size distributions of microporous polymer membranes having different physical architecture using capillary flow porometry", Mater. Today Chem., 23, 100652. https://doi.org/10.1016/j.mtchem.2021.100652.
- Alotaibi, A.A., Shukla, A.K., Mrad, M.H., Alswieleh, A.M., Alotaibi, K.M., (2021), "Fabrication of polysulfone-surface functionalized mesoporous silica nanocomposite membranes for removal of heavy metal ions from wastewater", Membranes, 11, 935. https://doi.org/10.3390/membranes11120935.
- Al-Rashdi, B.A.M., Johnson, D.J., Hilal, N. (2013), "Removal of heavy metal ions by nanofiltration", Desalination, 315, 2-17. https://doi.org/10.1016/j.desal.2012.05.022.
- Banerjee, R., Pace, N.J., Brown, D.R., Weerapana, E. (2013), "1,3,5-Triazine as a Modular Scaffold for Covalent Inhibitors with Streamlined Target Identification", J. Am. Chem. Soc., 135, 2497-2500. https://doi.org/10.1021/ja400427e.
- Bera, A., Trivedi, J.S., Jewrajka, S.K., Ghosh, P.K. (2016), "In situ manipulation of properties and performance of polyethyleneimine nanofiltration membranes by polyethylenimine-dextran conjugate", J. Membr. Sci., 519, 64-76. https://doi.org/10.1016/j.memsci.2016.07.038.
- Briffa, J., Sinagra, E., Blundell, R. (2020), "Heavy metal pollution in the environment and their toxicological effects on humans", Heliyon, 6, e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.
- Carrascal, M., Sanchez-Jimenez, E., Fang, J., Perez-Lopez, C., Ginebreda, A., Barcelo, D., Abian, J. (2023), "Sewage protein information mining: Discovery of large biomolecules as biomarkers of population and industrial activities", Environ. Sci. Technol., 57, 10929-10939. https://doi.org/10.1021/acs.est.3c00535.
- Chandrashekhar Nayak, M., Isloor, A.M., Inamuddin, Lakshmi, B., Marwani, H.M., Khan, I. (2020), "Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions", Arab. J. Chem., 13, 4661-4672. https://doi.org/10.1016/j.arabjc.2019.10.007.
- Chen, T., Li, W.Q., Hu, W.B., Hu, W.J., Liu, Y.A., Yang, H., Wen, K. (2019), "Direct synthesis of covalent triazine-based frameworks (CTFs) through aromatic nucleophilic substitution reactions", RSC Adv., 9, 18008-18012. https://doi.org/10.1039/C9RA02934F.
- Corpuz, M.V.A., Buonerba, A., Vigliotta, G., Zarra, T., Ballesteros, F., Campiglia, P., Belgiorno, V., Korshin, G., Naddeo, V. (2020), "Viruses in wastewater: occurrence, abundance and detection methods", Sci. Total Environ., 745, 140910. https://doi.org/10.1016/j.scitotenv.2020.140910.
- Dalwani, M., Bargeman, G., Hosseiny, S.S., Boerrigter, M., Wessling, M., Benes, N.E. (2011), "Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media", J. Membr. Sci., 381, 81-89. https://doi.org/10.1016/j.memsci.2011.07.018.
- Dalwani, M., Benes, N.E., Bargeman, G., Stamatialis, D., Wessling, M. (2011), "Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes", J. Membr. Sci., 372, 228-238. https://doi.org/10.1016/j.memsci.2011.02.012.
- Damiri, F., Andra, S., Kommineni, N., Balu, S.K., Bulusu, R., Boseila, A.A., Akamo, D.O., Ahmad, Z., Khan, F.S., Rahman, Md.H., Berrada, M., Cavalu, S. (2022) "Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: A comprehensive review", Materials, 15, 5392. https://doi.org/10.3390/ma15155392.
- Demeshko, S., Leibeling, G., Dechert, S., Meyer, F. (2004), "1,3,5-Triazine-based tricopper(ii) complexes: structure and magnetic properties of threefold-symmetric building blocks", Dalton Trans., 21, 3782. https://doi.org/10.1039/b407598f.
- Deng, L., Li, S., Qin, Y., Zhang, L., Chen, H., Chang, Z., Hu, Y. (2021), "Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneeimine followed by zwitterionic modification", J. Membr. Sci., 619, 118564. https://doi.org/10.1016/j.memsci.2020.118564.
- Dong, X., Lu, D., Harris, T.A.L., Escobar, I.C. (2021), "Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development", Membranes, 11, 309. https://doi.org/10.3390/membranes11050309.
- Dwight, D.W., Fabish, T.J., Thomas, H.R. (1981), Photon, Electron, and Ion Probes of Polymer Structure and Properties, ACS Symposium Series, American Chemical Society, Washington, D.C., U.S.A. https://doi.org/10.1021/bk-1981-0162.
- Elshof, M.G., Maaskant, E., Hempenius, M.A., Benes, N.E. (2021), "Poly(aryl cyanurate)-based thin-film composite nanofiltration membranes", ACS Appl. Polym. Mater., 3, 2385-2392. https://doi.org/10.1021/acsapm.0c01366.
- Farahbakhsh, J., Vatanpour, V., Khoshnam, M., Zargar, M. (2021), "Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review", React. Funct. Polym., 166, 105015. https://doi.org/10.1016/j.reactfunctpolym.2021.105015.
- Gholami, F., Asadi, A., Zinatizadeh, A.A. (2022), "Efficient heavy metals and salts rejection using a novel modified polysulfone nanofiltration membrane", Appl. Water Sci., 12, 146. https://doi.org/10.1007/s13201-022-01671-x.
- Gholami, S., Llacuna, J.L., Vatanpour, V., Dehqan, A., Paziresh, S., Cortina, J.L. (2022), "Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment", Chemosphere, 294, 133699. https://doi.org/10.1016/j.chemosphere.2022.133699.
- Ghosh, A.K., Jeong, B.H., Huang, X., Hoek, E.M.V. (2008) "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34-45. https://doi.org/10.1016/j.memsci.2007.11.038.
- Gupta, S., Bhatiya, D., Murthy, C.N. (2015), "Metal removal studies by composite membrane of polysulfone and functionalized single-walled carbon nanotubes", Sep. Sci. Technol., 50, 421-429. https://doi.org/10.1080/01496395.2014.973516.
- Hebbar, R.S., Isloor, A.M., Prabhu, B., Inamuddin, Asiri, A.M., Ismail, A.F. (2018), "Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay", Sci Rep., 8, 4665. https://doi.org/10.1038/s41598-018-22837-1.
- Ibrahim, S., Mohammadi Ghaleni, M., Isloor, A.M., Bavarian, M., Nejati, S. (2020), "Poly(homopiperazine-amide) thin-film composite membrane for nanofiltration of heavy metal ions", ACS Omega, 5, 28749-28759. https://doi.org/10.1021/acsomega.0c04064.
- Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014), "Toxicity, mechanism and health effects of some heavy metals", Interdiscipl. Toxicol., 7, 60-72. https://doi.org/10.2478/intox-2014-0009.
- Jiang, Z., Miao, J., He, Y., Hong, X., Tu, K., Wang, X., Chen, S., Yang, H., Zhang, L., Zhang, R. (2019), "A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance", RSC Adv., 9, 37546-37555. https://doi.org/10.1039/C9RA06528H.
- Kang, G., Liu, M., Lin, B., Cao, Y., Yuan, Q. (2007), "A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol)", Polymer, 48, 1165-1170. https://doi.org/10.1016/j.polymer.2006.12.046.
- Klangwart, N., Ruijs, C., Hawes, C.S., Gunnlaugsson, T., Kotova, O. (2022), "Tripodal 1,3,5-benzenetricarboxamide ligand with dipicolinic acid units and its binding with Eu(III) ions", Supramol. Chem., 34, 10-19. https://doi.org/10.1080/10610278.2023.2177162.
- Kumar, M., Seth, A., Singh, A.K., Rajput, M.S., Sikandar, M. (2021), "Remediation strategies for heavy metals contaminated ecosystem: A review", Environ. Sust. Indicat., 12, 100155. https://doi.org/10.1016/j.indic.2021.100155.
- Lee, K.P., Bargeman, G., De Rooij, R., Kemperman, A.J.B., Benes, N.E. (2017), "Interfacial polymerization of cyanuric chloride and monomeric amines: pH resistant thin film composite polyamine nanofiltration membranes", J. Membr. Sci., 523, 487-496. https://doi.org/10.1016/j.memsci.2016.10.012.
- Lee, K.P., Zheng, J., Bargeman, G., Kemperman, A.J.B., Benes, N.E. (2015), "pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation", J. Membr. Sci., 478, 75-84. https://doi.org/10.1016/j.memsci.2014.12.045.
- Li, F., Meng, J., Ye, J., Yang, B., Tian, Q., Deng, C. (2014), "Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: Morphology, stability, and anti-fouling", Desalination, 344, 422-430. https://doi.org/10.1016/j.desal.2014.04.011.
- Li, M., Zhang, W., Zhang, X., Guo, H., Liang, Y. (2023), "Recent advanced development of acid-resistant thin-film composite nanofiltration membrane preparation and separation performance in acidic environments", Separations, 10, 20. https://doi.org/10.3390/separations10010020.
- Liu, M., Zheng, Y., Shuai, S., Zhou, Q., Yu, S., Gao, C. (2012), "Thin-film composite membrane formed by interfacial polymerization of polyvinylamine (PVAm) and trimesoyl chloride (TMC) for nanofiltration", Desalination, 288, 98-107. https://doi.org/10.1016/j.desal.2011.12.018.
- Mahmoud, A.E.D., Mostafa, E. (2023), "Nanofiltration membranes for the removal of heavy metals from aqueous solutions: preparations and applications", Membranes, 13, 789. https://doi.org/10.3390/membranes13090789.
- Maxim, C., Matni, A., Geoffroy, M., Andruh, M., Hearns, N.G.R., Clerac, R., Avarvari, N. (2010), "C3 symmetric tris (phosphonate)-1,3,5-triazine ligand: homopolymetallic complexes and its radical anion", New J. Chem., 34, 2319. https://doi.org/10.1039/c0nj00204f.
- McCoy, B.J. (1995), "Membrane sieving of a continuous polydisperse mixture through distributed pores", Sep. Sci. Technol., 30, 487-507. https://doi.org/10.1080/01496399508225606.
- Mistry, P., Murthy, C.N. (2023), "Positively charged polysulfone and polyether sulfone mixed matrix membranes modified with polyethylenimine: Enhancing heavy metal rejection and antifouling properties", ACS EST Water, 3, 4168-4182. https://doi.org/10.1021/acsestwater.3c00585.
- Mistry, P., Nikita, K., Aswal, V.K., Kumar, S., Murthy, C.N. (2023), "Modification of surface characteristics of functionalized multi-walled carbon nanotubes containing mixed matrix membrane using click chemistry", Desal. Water Treat., 295, 42-51. https://doi.org/10.5004/dwt.2023.29589.
- Nikita, K., Karkare, P., Ray, D., Aswal, V.K., Singh, P.S., Murthy, C.N. (2019), "Understanding the morphology of MWCNT/PES mixed-matrix membranes using SANS: interpretation and rejection performance", Appl Water Sci., 9, 154. https://doi.org/10.1007/s13201-019-1035-4.
- Nikita, K., Kumar, S., Aswal, V.K., Kanchan, D.K., Murthy, C.N. (2019), "Porous structure studies of the mixed-matrix polymeric membranes of polyether sulfone incorporated with functionalized multiwalled carbon nanotubes", Desal. Water Treat., 146, 29-38. https://doi.org/10.5004/dwt.2019.23624.
- Nikita, K., Ray, D., Aswal, V.K., Murthy, C.N. (2020), "Surface modification of functionalized multiwalled carbon nanotubes containing mixed matrix membrane using click chemistry", J. Membr. Sci., 596, 117710. https://doi.org/10.1016/j.memsci.2019.117710.
- Nikita, K., Swetha, D.C., Murthy, C.N. (2022), "Uniquely modified polyethersulphone and f-CNTs mixed matrix membranes for enhanced water transport and reduced biofouling", Desal. Water Treat., 245, 16-34. https://doi.org/10.5004/dwt.2022.27980.
- Pandey, R.P., Ouda, M., Abdul Rasheed, P., Banat, F., Hasan, S.W. (2022), "Surface decoration of bis-aminosilane crosslinked multiwall carbon nanotube ultrafiltration membrane for fast and efficient heavy metal removal", NPJ Clean Water, 5, 44. https://doi.org/10.1038/s41545-022-00189-8.
- Qasem, N.A.A., Mohammed, R.H., Lawal, D.U. (2021), "Removal of heavy metal ions from wastewater: a comprehensive and critical review", NPJ Clean Water, 4, 1-15. https://doi.org/10.1038/s41545-021-00127-0.
- Rana, D., Matsuura, T. (2010), "Surface modifications for antifouling membranes", Chem. Rev., 110, 2448-2471. https://doi.org/10.1021/cr800208y.
- Samavati, Z., Samavati, A., Goh, P.S., Fauzi Ismail, A., Sohaimi Abdullah, M. (2023), "A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater", Chem. Eng. Res. Des., 189, 530-571. https://doi.org/10.1016/j.cherd.2022.11.042.
- Shah, P., Murthy, C.N. (2013), "Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal", J. Membr. Sci., 437, 90-98. https://doi.org/10.1016/j.memsci.2013.02.042.
- Sianipar, M., Hyun Kim, S., Khoiruddin, Iskandar, F., Gede Wenten, I. (2017), "Functionalized carbon nanotube (CNT) membrane: Progress and challenges", RSC Adv., 7, 51175-51198. https://doi.org/10.1039/C7RA08570B.
- Tan, X., Rodrigue, D. (2019), "A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride)", Polymers, 11, 1160. https://doi.org/10.3390/polym11071160.
- Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2012), "Heavy metals toxicity and the environment", EXS, 101, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6.
- Upadhyaya, L., Qian, X., Ranil Wickramasinghe, S. (2018), "Chemical modification of membrane surface - overview", Curr. Opin. Chem. Eng., 20, 13-18. https://doi.org/10.1016/j.coche.2018.01.002.
- Wang, H., Zheng, L., Yuan, B., Guo, S., Yuan, C. (2023), "How polyvinyl alcohol-based interlayers affect the performance of polyamide nanofiltration membranes prepared by polyethyleneimine", Sep. Sci. Technol., 58, 2369-2382. https://doi.org/10.1080/01496395.2023.2255737.
- Wang, L.Y., Wang, M.J. (2016), "Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method", ACS Sust. Chem. Eng., 4, 2830-2837. https://doi.org/10.1021/acssuschemeng.6b00336.
- Wietzke, R., Mazzanti, M., Latour, J.M., Pecaut, J. (1999), "Crystal structure and solution fluxionality of lanthanide complexes of 2,4,6,-Tris-2-pyridyl-1,3,5-triazine", Inorg. Chem., 38, 3581-3585. https://doi.org/10.1021/ic990122w.
- Wu, H., Li, X., Zhao, C., Shen, X., Jiang, Z., Wang, X. (2013), "Chitosan/sulfonated polyethersulfone-polyethersulfone (CS/SPES-PES) composite membranes for pervaporative dehydration of ethanol", Ind. Eng. Chem. Res., 52, 5772-5780. https://doi.org/10.1021/ie303437r.
- Wu, X.M., Wang, L.L., Wang, Y., Gu, J.S., Yu, H.Y. (2012), "Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry", J. Membr. Sci., 421-422, 60-68. https://doi.org/10.1016/j.memsci.2012.06.033.
- Xie, H., Saito, T., Hickner, M.A. (2011), "Zeta potential of ion-conductive membranes by streaming current measurements", Langmuir, 27, 4721-4727. https://doi.org/10.1021/la105120f.
- Zhang, R., Yu, S., Shi, W., Wang, W., Wang, X., Zhang, Z., Li, L., Zhang, B., Bao, X. (2017), "A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4‑dimethylaminopyridine (DMAP)", J. Membr. Sci., 542, 68-80. https://doi.org/10.1016/j.memsci.2017.07.054.
- Zhou, C., Shi, Y., Sun, C., Yu, S., Liu, M., Gao, C. (2014), "Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration", J. Membr. Sci., 471, 381-391. https://doi.org/10.1016/j.memsci.2014.08.033.