DOI QR코드

DOI QR Code

Multi-response optimization of FA/GGBS-based geopolymer concrete containing waste rubber fiber using Taguchi-Grey Relational Analysis

  • Arif Yilmazoglu (Department of Civil Engineering, Kocaeli University, Engineering Faculty, Department of Civil Engineering, Umuttepe Campus) ;
  • Salih T. Yildirim (Department of Civil Engineering, Kocaeli University, Engineering Faculty, Department of Civil Engineering, Umuttepe Campus) ;
  • Muhammed Genc (Department of Civil Engineering, Kocaeli University, Engineering Faculty, Department of Civil Engineering, Umuttepe Campus)
  • Received : 2023.10.26
  • Accepted : 2024.01.30
  • Published : 2024.08.25

Abstract

The use of waste tires and industrial wastes such as fly ash (FA) and ground granulated blast furnace slag (GGBS) in concrete is an important issue in terms of sustainability. In this study, the effect of parameters affecting the physical, mechanical and microstructural properties of FA/GGBS-based geopolymer concretes with waste rubber fiber was investigated. For this purpose, the effects of rubber fiber percentage (0.6%, 0.9%, 1.2%), binder (75FA25GGBS, 50FA50GGBS, 25FA75GGBS) and curing temperature (75 ℃, 90 ℃ and 105 ℃) were investigated. The Taguchi-Grey Relational Analysis (TGRA) method was used to obtain optimum parameter levels of rubber fiber geopolymer concrete (RFGC). The slump, fresh and hardened density, compressive strength, flexural strength, static and dynamic modulus of elasticity, ultrasonic pulse velocity (UPV) tests and scanning electron microscopy (SEM) analysis were performed on the produced concretes. The analysis of variance (ANOVA) method was used to statistically determine the effects of the parameters on the experimental results. A confirmation test was performed to test the accuracy of the optimum values found by the TGRA method. With the increase of GGBS percentage, the compressive strength of RFGC increased up to 196%. The increase in rubber fiber percentage and curing temperature adversely affected the mechanical properties of RFGC. As a result of TGRA, the optimum value was found to be A1B3C1. ANOVA results showed that the most effective parameter on the experimental results was the binder with 99% contribution percentage. It is understood from the SEM images that the optimum concrete had a denser microstructure and less capillary cracks and voids. For this study, the use of the TGRA method in multiple optimization has proven to provide very useful and reliable results. In cases where many factors are effective on its strength and durability, such as geopolymer concrete, using the TGRA method allows for finding the optimum value of the parameters by saving both time and cost.

Keywords

References

  1. Abdelmonem, A., El-Feky, M.S., Nasr, E.S.A.R. and Kohail, M. (2019), "Performance of high strength concrete containing recycled rubber", Constr. Build. Mater., 227, 116660. https://doi.org/10.1016/J.CONBUILDMAT.2019.08.041.
  2. Agrawal, D., Waghe, U., Ansari, K., Dighade, R., Amran, M., Qader, D.N. and Fediuk, R. (2023), "Experimental effect of pre-treatment of rubber fibers on mechanical properties of rubberized concrete", J. Mater. Res. Technol., 23, 791-807. https://doi.org/10.1016/J.JMRT.2023.01.027.
  3. Ali, I.M., Naje, A.S. and Nasr, M.S. (2020), "Eco-friendly chopped tire rubber as reinforcements in fly ash geopolymer concrete", Glob. NEST J., 22(3), 342-347. https://doi.org/10.30955/gnj.003192.
  4. Arunkumar, K., Muthukannan, M., Suresh kumar, A. and Chithambar Ganesh, A. (2021), "Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior", Environ. Res., 194, 110661. https://doi.org/10.1016/J.ENVRES.2020.110661.
  5. Aslani, F., Deghani, A. and Asif, Z. (2020), "Development of lightweight rubberized geopolymer concrete by using polystyrene and recycled crumb-rubber aggregates", J. Mater. Civil Eng., 32(2), 04019345. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003008.
  6. ASTM C597-16 (2016), Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, USA.
  7. ASTM C618 (2005), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, ASTM International, West Conshohocken, PA, USA.
  8. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Effect of elevated temperature curing on properties of alkali-activated slag concrete", Cement Concrete Res., 29(10), 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X.
  9. Batayneh, M.K., Marie, I. and Asi, I. (2008), "Promoting the use of crumb rubber concrete in developing countries", Waste Manag., 28(11), 2171-2176. https://doi.org/10.1016/J.WASMAN.2007.09.035. 
  10. Bayrak, B., Mostafa, S.A., O z, A., Tayeh, B.A., Kaplan, G. and Aydin, A.C. (2023), "The effect of clinker aggregate on acid resistance in prepacked geopolymers containing metakaolin and quartz powder in the presence of ground blast furnace slag", J. Build. Eng., 69, 106290. https://doi.org/10.1016/J.JOBE.2023.106290.
  11. Bhikshma, V. and Kumar, T.N. (2014), "Mechanical properties of fly ash based geopolymer concrete with addition of GGBS", Sustainable Solutions in Structural Engineering and Construction (SSEC), ISEC Press, Fargo, ND, USA.
  12. BS EN 12350-2 (2019), Testing Fresh Concrete - Slump Test, British Standards Institution, Milton Keynes, UK.
  13. BS EN 12350-6 (2019), Testing Fresh Concrete - Density, The British Standards Institution, London, UK.
  14. BS EN 12390-3 (2019), Testing Hardened Concrete - Compressive Strength of Test Specimens, The British Standards Institution, London, UK.
  15. BS EN 12390-5 (2019), Testing Hardened Concrete - Flexural Strength of Test Specimens, The British Standards Institution, London, UK.
  16. BS EN 12390-7 (2019), Testing Hardened Concrete - Density of Hardened Concrete, The British Standards Institution, London, UK.
  17. CEMBUREAU (2018), "Activity report 2017", CEMBUREAU, Bruxelles, Belgium.
  18. CEMBUREAU. (2021), "2020 activity report", CEMBUREAU, Bruxelles, Belgium.
  19. CEMBUREAU. (2023), "Activity report 2022", CEMBUREAU, Bruxelles, Belgium.
  20. Chang, C.Y., Huang, R., Lee, P.C. and Weng, T.L. (2011), "Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures", Cement Concrete Compos., 33(10), 1038-1049. https://doi.org/10.1016/J.CEMCONCOMP.2011.06.005.
  21. Chen, G., Zheng, D.P., Chen, Y.W., Lin, J.X., Lao, W.J., Guo, Y.C., Chen, Z.B. and Lan, X.W. (2023), "Development of high performance geopolymer concrete with waste rubber and recycle steel fiber: A study on compressive behavior, carbon emissions and economical performance", Constr. Build. Mater., 393, 131988. https://doi.org/10.1016/j.conbuildmat.2023.131988.
  22. Chen, Z., Wan, X., Qian, Y., Qiao, J., Jia, J., Mo, L., ... and Min, F. (2021), "The effect on the compressive strength of fly ash based geopolymer concrete with the generation of hydroxy sodalite", Constr. Build. Mater., 309, 125174. https://doi.org/10.1016/J.CONBUILDMAT.2021.125174.
  23. Chi, M.C., Chang, J.J. and Huang, R. (2012), "Strength and drying shrinkage of alkali-activated slag paste and mortar", Adv. Civil Eng., 579732, 1-7. https://doi.org/10.1155/2012/579732.
  24. Chindaprasirt, P., Chareerat, T., Hatanaka, S. and Cao, T. (2011), "High-strength geopolymer using fine high-calcium fly ash", J. Mater. Civil Eng., 23(3), 264-270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000161.
  25. Choi, Y., Kim, I.H., Lim, H.J. and Cho, C.G. (2022), "Investigation of strength properties for concrete containing fine-rubber particles using UPV", Mater., 15(10), 3452. https://doi.org/10.3390/ma15103452.
  26. Collins, F.G. and Sanjayan, J.G. (1999), "Workability and mechanical properties of alkali activated slag concrete", Cement Concrete Res., 29(3), 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1.
  27. Davidovits, J. (1994), "High-alkali cements for 21st century concretes", Spec. Publ., 144, 383-398. https://doi.org/10.14359/4523.
  28. Davidovits, J. (1999), "Chemistry of geopolymeric systems, terminology", Geopolymere '99 International Conference, Saint-Quentin, France, June-July.
  29. Davidovits, J. (2020), Geopolymer Chemistry And Applications, Geopolymer Institute, Saint-Quentin, France.
  30. Emiroglu, M., Yildiz, S. and Kelestemur, M.H. (2008), "An investigation on ITZ microstructure of the concrete containing waste vehicle tire", Comput. Concrete, 5(5), 503-508. https://doi.org/10.12989/cac.2008.5.5.503.
  31. Feldman, R.F. (1977), Non-Destructive Testing of Concrete, National Research Council of Canada, Ottawa, ON, Canada.
  32. Ferdous, W., Manalo, A. and Aravinthan, T. (2017), "Bond behaviour of composite sandwich panel and epoxy polymer matrix: Taguchi design of experiments and theoretical predictions", Constr. Build. Mater., 145, 76-87. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.244.
  33. Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, C. (2006), "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., 103(2), 106-112. https://doi.org/10.14359/15261.
  34. Ganjian, E., Khorami, M. and Maghsoudi, A.A. (2009), "Scrap-tyre-rubber replacement for aggregate and filler in concrete", Constr. Build. Mater., 23(5), 1828-1836. https://doi.org/10.1016/J.CONBUILDMAT.2008.09.020.
  35. Girish, M.G., Shetty, K.K. and Nayak, G. (2022), "Synthesis of fly-ash and slag based geopolymer concrete for rigid pavement", Mater. Today Proc., 60, 46-54. https://doi.org/10.1016/J.MATPR.2021.11.332.
  36. Gok, S.G. and Kilinc, K. (2017), "Mechanical properties of fly ash and blast furnace slag based alkali activated concrete", Kirklareli Univ. J. Eng. Sci., 3(2), 123-131.
  37. Graytee, A., Sanjayan, J.G. and Nazari, A. (2018), "Development of a high strength fly ash-based geopolymer in short time by using microwave curing", Ceram. Int., 44(7), 8216-8222. https://doi.org/10.1016/J.CERAMINT.2018.02.001.
  38. Guneyisi, E., Gesoglu, M., Naji, N. and Ipek, S. (2016), "Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models", Arch. Civil Mech. Eng., 16(1), 9-19. https://doi.org/10.1016/J.ACME.2015.09.003.
  39. Gupta, T., Chaudhary, S. and Sharma, R.K. (2014), "Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate", Constr. Build. Mater., 73, 562-574. https://doi.org/10.1016/J.CONBUILDMAT.2014.09.102.
  40. Hadi, M.N.S., Farhan, N.A. and Sheikh, M.N. (2017), "Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method", Constr. Build. Mater., 140, 424-431. https://doi.org/10.1016/J.CONBUILDMAT.2017.02.131.
  41. Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Research Report GC 1; Curtin University, Perth, Australia.
  42. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. and Rangan, B.V. (2004), "On the development of fly ash-based geopolymer concrete", Mater. J., 101(6), 467-472. https://doi.org/10.14359/13485.
  43. Hasnaoui, A., Ghorbel, E. and Wardeh, G. (2019), "Comparison between Portland cement concrete and geopolymer concrete based on metakaolin and granulated blast furnace slag with the same binder volume", Acad. J. Civil Eng., 37(2), 127-132.
  44. ISO 1920-10 (2010), Testing of Concrete - Determination of Static Modulus of Elasticity in Compression, International Organization for Standardization, Geneva, Switzerland.
  45. Kantarci, F., Turkmen, I. and Ekinci, E. (2021), "Influence of various factors on properties of geopolymer paste: A comparative study", Struct. Concrete, 22, E315-E331. https://doi.org/10.1002/suco.201900400.
  46. Kazemi, R. (2023). "Artificial intelligence techniques in advanced concrete technology: A comprehensive survey on 10 years research trend", Eng. Rep., 5(9), e12676. https://doi.org/10.1002/eng2.12676.
  47. Kelestemur, O. and Arici, E. (2020), "Analysis of some engineering properties of mortars containing steel scale using Taguchi based grey method", J. Build. Eng., 29, 101015. https://doi.org/10.1016/J.JOBE.2019.101015.
  48. Kuo, Y., Yang, T. and Huang, G.W. (2008), "The use of a grey-based Taguchi method for optimizing multi-response simulation problems", Eng. Opt., 40(6), 517-528. https://doi.org/10.1080/03052150701857645.
  49. Kurt, Z., Ustabas, I. and Cakmak, T. (2023), "Novel binder material in geopolymer mortar production: Obsidian stone powder", Struct. Concrete, 24(4), 5600-5613. https://doi.org/10.1002/suco.202201089.
  50. Leslie, J.R. and Cheesman, W.J. (1949), "An ultrasonic method of studying deterioration and cracking in concrete structures", J. Am. Concrete Inst., 21(1), 17-36.
  51. Lilly Mercy, J., Prakash, S., Krishnamoorthy, A., Ramesh, S. and Alex Anand, D. (2017), "Multi response optimisation of mechanical properties in self-healing glass fiber reinforced plastic using grey relational analysis", Measure., 110, 344-355. https://doi.org/10.1016/J.MEASUREMENT.2017.07.013.
  52. Lin, J.X., Chen, G., Pan, H.S., Wang, Y.C., Guo, Y.C. and Jiang, Z.X. (2023), "Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics", Compos. Struct., 323, 117437. https://doi.org/10.1016/j.compstruct.2023.117437
  53. Lin, J.X., Song, Y., Xie, Z.H., Guo, Y.C., Yuan, B., Zeng, J.J. and Wei, X. (2020), "Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers", J. Build. Eng., 29, 101097. https://doi.org/10.1016/j.jobe.2019.101097.
  54. Lv, J., Zhou, T., Du, Q. and Wu, H. (2015), "Effects of rubber particles on mechanical properties of lightweight aggregate concrete", Constr. Build. Mater., 91, 145-149. https://doi.org/10.1016/J.CONBUILDMAT.2015.05.038.
  55. Ma, X., Zhang, Z. and Wang, A. (2016), "The transition of fly ash-based geopolymer gels into ordered structures and the effect on the compressive strength", Constr. Build. Mater., 104, 25-33. https://doi.org/10.1016/J.CONBUILDMAT.2015.12.049.
  56. Melo Neto, A.A., Cincotto, M.A. and Repette, W. (2008), "Drying and autogenous shrinkage of pastes and mortars with activated slag cement", Cement Concrete Res., 38(4), 565-574. https://doi.org/10.1016/J.CEMCONRES.2007.11.002.
  57. Nagral, M.R., Ostwal, T. and Chitawadagi, M.V. (2014), "Effect of curing temperature and curing hours on the properties of geopolymer concrete", Int. J. Comput. Eng. Res., 4(9), 1-11.
  58. Narong, O.L.C., Sia, C.K., Yee, S.K., Ong, P., Zainudin, A., Nor, N.H.M. and Hassan, M.F. (2018), "Optimisation of EMI shielding effectiveness: Mechanical and physical performance of mortar containing POFA for plaster work using Taguchi Grey method", Constr. Build. Mater., 176, 509-518. https://doi.org/10.1016/J.CONBUILDMAT.2018.05.025.
  59. Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/J.CONBUILDMAT.2014.05.080.
  60. Noushini, A. and Castel, A. (2016), "The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete", Constr. Build. Mater., 112, 464-477. https://doi.org/10.1016/j.conbuildmat.2016.02.210.
  61. Noushini, A., Castel, A., Aldred, J. and Rawal, A. (2020), "Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete", Cement Concrete Compos., 105, 103290. https://doi.org/10.1016/J.CEMCONCOMP.2019.04.006.
  62. Olivia, M. and Nikraz, H. (2012), "Properties of fly ash geopolymer concrete designed by Taguchi method", Mater. Des., 36, 191-198. https://doi.org/10.1016/J.MATDES.2011.10.036.
  63. Oluwafemi, J., Ofuyatan, O., Adedeji, A., Bankole, D. and Justin, L. (2023), "Reliability assessment of ground granulated blast furnace slag/cow bone ash- based geopolymer concrete", J. Build. Eng., 64, 105620. https://doi.org/10.1016/J.JOBE.2022.105620.
  64. Parthiban, K., Saravanarajamohan, K., Shobana, S. and Bhaskar, A.A. (2013), "Effect of replacement of slag on the mechanical properties of fly ash based geopolymer concrete", Int. J. Eng. Technol., 5(3), 2555-2559.
  65. Peng, Y.Q., Zheng, D.P., Pan, H.S., Yang, J.L., Lin, J.X., Lai, H.M., Wu, P.Z. and Zhu, H.Y. (2023), "Strain hardening geopolymer composites with hybrid POM and UHMWPE fibers: Analysis of static mechanical properties, economic benefits, and environmental impact", J. Build. Eng., 76, 107315. https://doi.org/10.1016/j.jobe.2023.107315.
  66. Pham, T.M., Chen, W., Khan, A.M., Hao, H., Elchalakani, M. and Tran, T.M. (2020), "Dynamic compressive properties of lightweight rubberized geopolymer concrete", Constr. Build. Mater., 265, 120753. https://doi.org/10.1016/J.CONBUILDMAT.2020.120753.
  67. Rao, G.M. and Venu, M. (2020), "Mix design methodology for fly ash and ggbs-based geopolymer concrete", Advances in Structural Engineering: Select Proceedings of FACE 2019, Singapore Springer, Singapore.
  68. Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber - an overview", Waste Manag., 24(6), 563-569. https://doi.org/10.1016/J.WASMAN.2004.01.006.
  69. Singh, G., Tiwary, A.K., Singh, S., Kumar, R., Chohan, J.S., Sharma, S., Li, C., Sharma, P. and Deifalla, A.F. (2022), "Incorporation of silica fumes and waste glass powder on concrete properties containing crumb rubber as a partial replacement of fine aggregates", Sustainab., 14(21), 14453. https://doi.org/10.3390/su142114453.
  70. Su, J.Y., Chen, G., Pan, H.S., Lin, J.X., Zhang, J., Zhuo, K.X., Chen, Z.B. and Guo, Y.C. (2023), "Rubber modified high strength-high ductility concrete: Effect of rubber replacement ratio and fiber length", Constr. Build. Mater., 404, 133243. https://doi.org/10.1016/j.conbuildmat.2023.133243.
  71. Thakare, A.A., Siddique, S., Singh, A., Gupta, T. and Chaudhary, S. (2022), "Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete", Adv. Concrete Constr., 13(6), 433-450. https://doi.org/10.12989/acc.2022.13.6.433.
  72. Thomas, B.S. and Gupta, R.C. (2015), "Long term behaviour of cement concrete containing discarded tire rubber", J. Clean. Prod., 102, 78-87. https://doi.org/10.1016/J.JCLEPRO.2015.04.072.
  73. Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/J.CONBUILDMAT.2014.01.074.
  74. TS 802 (2016), Design of Concrete Mixes, Turkish Standards Institution, Ankara, Turkey.
  75. Ushaa, T.G., Anuradha, R. and Venkatasubramani, G.S. (2015), "Performance of self-compacting geopolymer concrete containing different mineral admixtures", Indian J. Eng. Mater. Sci., 22, 473-481.
  76. Wallah, S.E. and Rangan, B. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Research Report GC 2; Curtin University, Perth, Australia.
  77. Yang, T., Yao, X., Zhang, Z. and Wang, H. (2012), "Mechanical property and structure of alkali-activated fly ash and slag blends", J. Sustainab. Cement Based Mater., 1(4), 167-178. https://doi.org/10.1080/21650373.2012.752621.
  78. Yildirim, S.T. and Duygun, N.P. (2017), "Mechanical and physical performance of concrete including waste electrical cable rubber", IOP Conf. Ser. Mater. Sci. Eng., 245, 022054. https://doi.org/10.1088/1757-899X/245/2/022054.
  79. Zaetang, Y., Wongsa, A., Chindaprasirt, P. and Sata, V. (2019), "Utilization of crumb rubber as aggregate in high calcium fly ash geopolymer mortars", Int. J. Geomate, 17(64), 158-165. https://doi.org/10.21660/2019.64.12697.