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THE TILTED CARATHEODORY FUNCTION CLASS AND
ITS PRACTICAL APPLICATIONS

NAK Eun CHO", INHWA KIM, AND YOUNG JAE SIM

ABSTRACT. In this paper, by using a technique of the first-order differ-
ential subordination, we find several sufficient conditions for the tilted
Carathéodory function of order § and angle o (o € (—7/2,7/2) and
B € [0,cos)), which maps the unit disk D into the region {w € C :
Re{e!*w} > B}. Using these conditions, we also derive conditions for
an analytic function that maps D into a sector defined by {w € C :
|arg(w — )| < (w/2)6}, where v € [0,1) and § € (0,1]. The results ob-
tained here will be applied to find some conditions for spirallike functions
and strongly starlike functions in D.

1. Introduction

Let H; be the class of functions p analytic in I and satisfy p(0) = 1. Let us
define two subfamilies Pg(a) and Q~(J) of H; by

Ps(a) = {p € H1 : Re{e'*p(2)} > B for all z € D}

and
Q4(8) ={p € H1:|arg(p(z) —7)| < g& for all z € D},

where —7/2 < a < 7/2,0< f <cosa, 0 <y <1and 0 <d < 1. Functions
in Pg(0) = Qp(1) := P(B) are called Carathéodory functions of order /3, and
functions in Py(0) = Qp(1) := P are called functions with positive real part
or Carathéodory functions (refer to [1, Chapter 7] and [11, Section 3.1]), and
they have an important role of studying Geometric Function Theory. For ex-
ample, see [6-9]. Also, functions in Py(«) were named by tilted Carathéodory
functions by angle « [12]. For that reason, we call Pg(a) by the class of tilted
Carathéodory functions of order 8 and angle a.
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Let A denote the class of functions normalized by the condition f(0) =
f'(0) — 1 = 0 which are analytic in the open unit disk D := {z € C : |z] < 1}.
Also, let S denote the class of all functions in A which are univalent in D. For
—7/2 <a<w/2and 0 < < cosa, a function f € A is called an a-spirallike
function of order g [1, Vol. II, p. 89] (see also [4,10]) if and only if f satisfies

(1.1) Re {eia foéij)} > B, ze€D.

And, for0<y<land 0<d <1, f € Ais called a strongly starlike function
of order § and type v [2] if and only if f satisfies

zf'(2) 7r
arg<f(z) 7>’<2(5, z € D.
We denote by Sj(a) and SS7(d) the classes of functions satisfying the con-
dition (1.1) and (1.2), respectively. In particular, functions in Sf(a) and
S5(0) = 8S5(1) are called a-spirallike and starlike of order j, respectively.
Also, by strongly starlike functions of order ¢ we call functions in SS;(9). Es-
pecially, we have §}(0) = SS;(1) = S§*, where S* is the well-known class of
starlike univalent functions. We note that all functions in S3(a) or SS7(0) are
univalent. Moreover, it holds that

Si(a) C Sp(a) C S,
SsSL(1)=85(0)cs cs

(1.2)

and
SS2(0) € 8Sp(0) ¢ ST C S.
We note that, by setting J¢(z) := zf'(2)/f(z), we have the following equiv-
alence
fe Sg(a) <~ Jf S Pg(a)
and
[ €88.(0) <= Jy € Q,(9).
We also note that
2
(1.3) 77/3(04) n 'P[—}(*Oé) C Qﬁ (1 - Wa) .
So it holds that
2
Sila)NSH(— SSEl1—=a.
In Section 2, we will find some sufficient conditions for p € H; to satisfy
p € Pg(a) or p € Q- (8). We consider a region of functional (1—k)p(z)+rp?(z)+
kAzp'(z) for p to be in the class Pg(a). Also, for p € H; satisfying nzp/(z) +
P(2)p(z) = 1, we will obtain some conditions for P(z) to p € Pg(a). Then,
as direct consequences of these results, new criteria for a-spirallike functions

of order § or strongly starlike functions of order § and type v will be listed in
Section 3.
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For analytic functions f and g, we say that f is subordinate to g, denoted
by f < g, if there is an analytic function w : D — D with |w(z)| < |z| such that
f(z) = g(w(z)). Further, if g is univalent, then the definition of subordination
f =< g simplifies to the conditions f(0) = ¢g(0) and f(D) C g(D) (see [5, p. 36]).

Let D={z€C:|z] <1} and D = {z € C : |z| = 1} be the closure and
boundary of D, respectively. We denote by R the class of functions ¢ that are
analytic and injective on D\ E(q), where

E(q) = {C:CEG]D) and lLHEQ(Z) zoo},

and are such that

q'(C)#0 (¢ €D\ E(q)).

Furthermore, let the subclass of R for which ¢(0) = a be denote by R(a). We
recall that the following lemma which will be used for our results.

Lemma 1.1 ([3, p. 24]). Let ¢ € R(a) and let
p(z)=a+apz"+--- (n>1)

be an analytic function in D with p(0) = a. If p is not subordinate to q, then
there exist points zo € D and (y € OD \ E(q) for which

(1) p(z0) = q(Co);
(i) zop'(20) = mCoq' (o) (m >n > 1).

2. Main results

Theorem 2.1. Let k, a, 8 and X be real numbers such that k > 0, —7/2 <
a<7/2,0< B <cosa, A>0 and

2.1) \s —2(cosa — f3) cos 2

cos «
If an analytic function p with p(0) = 1 satisfies
(2.2) Re{(1 — k)p(2) + kp?(2) + kA2p'(2)} > Ak, B,)), z €D,
where

A(H7 a7 B? )\)
kAcosa(2Bcosa — 1 — %)
2(cosa — B)
sin af(cosa — B)(1 — k) + Kcosa(4B(cosa — B) + \)?
2k(cos o — B)[2(cos @ — B) cos 2a. + A cos

(2.3) = B(1 — k) cosa + KB% cos® a +

)

and A(k,a, B,\) < 1, then p € Pg(a). Furthermore, if 0 < a < w/2, then
pe Qp(l—(2/m)a).
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Proof. Let us define two functions g and h : D — C by
(2.4) q(z) = ep(2)
and
el + (e71* —28)2
1—2 '
Then, the functions ¢ and h are analytic in D with
q(0) = h(0) =e* € C and h(D)={wec C:Re{w} > B}.

Now, suppose that ¢ is not subordinate to h. Then by Lemma 1.1, there exist
points zp € D and (o € 9D\ {1} such that

(2.5) h(z) =

(2.6) q(z0) = h(o) = B +1p (p € R).
Furthermore, by a logarithmic differentiation of (2.5), we have

K (z) e i@ — 28 1

h(z) e+ (e7ia—28)z 11—z
and

e i _ 253 1
h'(z) = zh 4 . +

(2.7) M) =2 |G e 28 T T

; z
=[e7* =28+ h(2)] - —.
[e Bth)] 17—
From h(¢p) = B +ip, we have
B+ip— e G Btip—e°
2.8 = d = .
(28) 0 el — B4ip e T ¢ 2(cosa—p)
By taking (2.8) into account of (2.7), we get
Go

Coh'(Go) = [e7* =28 + (o)) - -G

(B+ip—e®) (e’ — B +1ip)

2(cosa — )
_ —p*+2psina+2Bcosa—1— %
B 2(cosa — 3) -

(2.9) -

Thus, by Lemma 1.1, we get
(2.10) 204 (z0) = moh/(Co) = mo  (m > 1),

where o is given in (2.9).
Using (2.4), (2.6) and (2.10), we obtain
(1 = K)p(20) + £p*(20) + KAz’ (20)
(2.11) = (1 — k)(Bcosa + psina) + k((8* — p?) cos 2a + 2Bpsin 2a)
+ kAmo cosa +1[(1 — Kk)(pcosa — Bsina)

+ Kk(2Bpcos2a — (8% — p?) sin 2a) — kAmo sin a.
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By taking real parts in the above and using the inequality kAmocosa <
KA cos o, we obtain

R12) Re{(L= R)plz0) + w(a0) + w208 (20)} € gresa(p),
where g(p) = kap? + k1p + ko with
ky = — k[2(cosa — f3) cos 2 + A cos @,
k1 = 2(cosa — B)(1 — k) sina + 4(cos o — B) kB sin 2a + 2k A sin a cos v,
ko = 2B8(cosa — B)(1 — k) cos a + 2k3%(cos o — 3) cos 2
+ KkAcosa(2Bcosa — 1 — f32).
Since k > 0, from the condition (2.1), we have ky < 0. So, the function g

is a quadratic concave function in R, and g has the unique local maximum at
p* = —k1/(2k2). Thus we have

(2.13) 9(p) < g(p*) = *T,;Jrko, pER.

Hence, by (2.12) and (2.13), we obtain

1

_ 2 / < - *) )
Ref(1 = plz0) + k52(0) + K208 (20)} < 5 —a(p") = Al 5.)
This is a contradiction to (2.2). Therefore we obtain ¢ < h in D and it follows

that the inequality Re {e'*p(z)} > 8 holds for all z € D and p € Pg(a).
Furthermore, for 0 < o < /2, it is clear that A(k, o, 8,\) = A(k, —a, 5, \)
holds. So, we have p € Pg(—a), and that p € Qg(1 — (2/7)«) follows from
(1.3). O

By taking k = 1, A = 1 and § = 0 in Theorem 2.1, we have the following
result.

Corollary 2.2. Leta € (—m/2,7/2) with 13sin® a < 9. If an analytic function
p with p(0) = 1 satisfies

1 in?
Re {p2(2) +zp'(z)} >4 ST o«

————— 2€D,
2 2(3—4sin’a)

then Re{e*p(2)} > 0 for all 2 € D, and

Y
larg {p(2)} [ < 5 —a, z€D.

Theorem 2.3. Let k, a, 8 and A be real numbers such thatk > 0,0 < a < 7/2,
0 < B <cosa and A > 0. If an analytic function p with p(0) = 1 satisfies

(214)  In{(1—R)p(=) + kp2(2) + KA (2)} < Alk, B, ),
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where
A(k,a, B, N)
KAsin a
2(cosa — B)
[(cos v — B)[(1 — k) cos a + 2kf3 cos 2a] — kA sin? a]?
2k(cosa — B)[2(cos @ — B) sin 2c + A sin ¢
and Ak, a, 5, A) >0, then p € Pg(a).

= — (1 —k)Bsina — kB?%sin2a + (—2Bcosa + 1+ 3?)

(2.15)

Proof. Let us define g and h as given (2.4) and (2.5), respectively. And suppose
that ¢ is not subordinate to h. Then we have zp € D and {y € 9D\ {1} satisfying
(2.6) and (2.10). Also, we get (2.11).
Using the inequality kAmo < kAo, we obtain
Im {(1 — #)p(20) + #p*(20) + KA20p' (20)} = kop® + k1p + ko =2 9(p),

where

ko = ksina | 2cosa + A
2 2(cosa—3) )’
rAsin? o
k1 = (1 —k)cosa + 2K/ cos 200 — ——,
cosa — f3
\si
ko = —(1 — k)Bsina — kA% sin 2a + 72(505211—&5) [~2Bcosa + 1+ 7).
Since k2 > 0, g has the unique local minimum at p = p* := —k1/(2k2). Thus

we have )

k
9(p) 2 9(p") = ko = 77~ = Alr, @, 8, )

for all p € R. Hence we obtain
Im {(1 = r)p(z0) + £p*(20) + £Az0p (20)} = Alk, @, B, N),

which is a contradiction to (2.14). Therefore we obtain ¢ < h in D and it follows
that the inequality Re {€'*p(z)} > 8 holds for all z € D and p € Pg(a). O

By taking k = 1, A = 1 and 8 = 0 in Theorem 2.3, we have the following
result.

Corollary 2.4. Let 0 < a < w/2. If an analytic function p with p(0) = 1
satisfies
Hcosasin o

—— 2z €D,
2+ 8cos?

Im {p”(2) + 2p'(2)} <
then p € Py(a).
Theorem 2.5. Let k, a, 8 and X be real numbers such that k > 0, —7/2 <
a<0,0< 8 <cosaand A > 0. If an analytic function p with p(0) = 1

satisfies
Im {(1 — #)p(2) + Kp*(2) + KAzp'(2)} > Ak, @, B, M),
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where Ak, a, B, \) is given by (2.15) and A(k, o, B, X) <0, then p € Pg(a).

By taking k = 1, A = 1 and § = 0 in Theorem 2.5, we have the following
result.

Corollary 2.6. Let —7/2 < a < 0. If an analytic function p with p(0) = 1
satisfies
5 cos asin o

o o e D,
2 4+ 8cos? o *

Im {p?(2) + 2p'(2)} >
then p € Py(a).
Also, combining Corollaries 2.4 and 2.6 leads to the following result.

Corollary 2.7. Let 0 < a < w/2. If an analytic function p with p(0) = 1
satisfies
5 cosasina

77 E]:D))
2 + 8cos? a *

[Im {p*(2) + 2 (2)}] <
then p € Qo(1 — (2/m)a).
Now we consider a differential equation of p defined by
(2.16) nzp'(2) + P(2)p(2) = 1

for some P : D — C. In what follows, we find some sufficient conditions for
p € Hi satisfying (2.16) to belong to Pg(a) or Q- (0).

Theorem 2.8. Let a, 8 and n be real numbers such that —w/2 < a < 7/2,
0<pB<cosaandn>0. Let

2 4 3 2
(2.17) A = A(a, 8,7) := min n°p” + azp® + azp” +a1p+ ao7
peER 52 +p2

where
ap = 4(cosa — B)? +n(2Bcosa — 1 — B?)[—4 cos acos o — 3)
Fn(2Beosa—1— 5],
(2.18) ay = 4nsina[—2cos a(cosa — B) + n(2Bcosa — 1 — )],
as = 4ncosa(cosa — f) + 2n?(2sin® a — 2B cosa + 1 + 52),

as = —4n’sina.
Assume that VA > 2(cosa — f3), and let P : D — C with

VA .
P —— =A D.
POI< gy = B #e
If p is analytic in D, p(0) = 1 and p satisfies (2.16), then Re{e'“p(z)} > B for
all z € D. Furthermore, if 0 < o < /2, then p € Qg(1l — (2/m)).
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Proof. Let us define g and h as given (2.4) and (2.5), respectively. And suppose
that ¢ is not subordinate to h. Then we have zg € D and {p € 0D\ {1} satisfying
(2.6) and (2.10).

By (2.16), we get

¢ — nzog'(z0) _ ¢ = mo
q(20) B+ip
Moreover, since m > 1 and ¢ < 0, by (2.9), we have

(2.19) P(z) =

|eia _ nmo_‘2

= (cosa — nmo)? + sin® «

N N2 2
(2.20) > (cosa —no)* +sin” «
=1-2nocosa+n?c?
_ 1?0 +azp® + azp® +arp+ a
4(cosa — 8)? ’
where a;, i € {0,1,2,3} are given by (2.18). Hence, combining (2.19) and
(2.20) yields

e — pmo? S p* +asp® + axp? +aip + ag

2
|P(20)|" = B2+ p? - 4(cosa — 3)%(B2 + p?)
Thus we get A
2
1P(0)l" 2 Tosa = A7

which contradicts the assumption of Theorem 2.8. Therefore we obtain ¢ < h
in D and Re {e!“p(z)} > 3 for z € D.
Furthermore, let 0 < o < w/2. Then it is easy to see that

2.4 3 2 _
Ao, Bn) = min T 0002 Sl — WP

pER 52 +p2
254 =3 2 =
. NPT A asp” +agp” +ai1p + ag
= min =
pER B2+ p?
= A(aaﬂvn)a
where g = —p € R. So, it follows that p € Pg(—a) and p € Qg(1 — (2/7)a) by
(1.3). O

By putting a = 8 = 0 in Theorem 2.8, we have the following result.

Corollary 2.9. Let n € R with n > —1++/2. Let P : D — C with |P(z)| <

VN2+2n. Ifpis analytic in D, p(0) = 1 and p satisfies (2.16), then Re{p(z)} >
0 for all z € D.

We give tables which give the approximate values of A in Theorem 2.8 for
the following cases:

(a) a=0,p=1and B=j/10 (j =1,2,...,9),
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TABLE 1. The approximate values of A in the case (a)

B

A

B

A

0
0.1
0.2
0.3
0.4

1.73205
1.79161
1.85405
1.91663
1.97203

0.5
0.6
0.7
0.8
0.9

2
1.93649
1.64286

1.375
1.16667

TABLE 2. The approximate values of A in the case (b)

n A n | A
1 2 6| 5
21282843 || 7 | 5.5
3| 34641 || 8 | 6
4 4 9 16.5
5 4.5 0] 7

TABLE 3. The approximate values of A in the case (c)

(@)

A

[e%

A

0
0.1
0.2
0.3
0.4
0.5

2
1.83753
1.69343
1.56427
1.44783
1.34286

0.6
0.7
0.8
0.9
1.0

1.24888
1.16618
1.09589
1.04047
1.00543

The following result is a sufficient condition for p € Py(a).

Theorem 2.10. Let o and n be real numbers such that —7w/2 < a < /2,
n >0 and cos® a(ncos? a — 1) + n*(1 —sina)? > 0. Let P: D — C with

(2.21) 1P(2)] <

ncost o + n?(1 — sin a)?
|< ] n

COoS &

, ze€D.

If p is analytic in D, p(0) = 1 and p satisfies the differential equation (2.16),
then p € Po(a). Furthermore, if 0 < a < w/2, then p € Qp(1 — (2/7)a).
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Proof. Let q(z) = e*p(z) and

eia _|_efiozz
hi(z) = ————

Suppose that ¢ is not subordinate to h;. By Lemma 1.1, there exist points
z0 € D and {p € 9D \ {1} such that

(2.22) q(z0) = h1(Go) =ip (p € R\ {0}) and

. 204’ (20) = mGoh’ (Co) = moy1 (m > 1),

where

—p? +2psina — 1
g1 = .
2cosa
Therefore, from (2.16) and (2.22), we have
el — nmo
ip '
Moreover, since m > 1 and o1 < 0, we have

P(z) =

le'® — pmo|*> > 1 — 2oy cosa + n20? = g(p),

where

7]2

4cos? o

g(x) =14 n(2? — 2rsina + 1) + (z? — 2z sina + 1)

For x > 0, we have

1 22 —2xsina + 1

2
>0, .

Zlfsin2a:cos o

T

and
2?2 —2zsina+1

> 2(1 —si .
. > 2(1 —sina)

Using the above inequalities, we obtain
g(z) - ncosta +n*(1 —sina)?
2

(2.23) . x>0

x cos? «
By a similar method with the above, we also obtain

g(x) S ncosta +n?(1 +sina)? S necost a +n*(1 — sina)?
x? -

(2.24) . x<0.

cos? a cos? a
Therefore, by (2.23) and (2.24), we get

ncost a +n?(1 —sina)?

9(p)
P 2> >
|P(20)1" 2 P> cos? o

which contradicts (2.21). Therefore we obtain ¢ < hy in D and Re {e*p(z)} > 0
for z € D as we asserted.

Also, for 0 < a < 7/2, we have Re {e’iap(z)} > 0. Therefore, we get
p € Qo(l —(2/m)a). O

In particular, the case @ = 0 in Theorem 2.10 induces the following result.

)
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Corollary 2.11. Let n € R with n > (=1 ++/5)/2, and let P : D — C with

|P(2)] < /n(1+4+n) for z € D. If p is analytic in D, p(0) = 1 and p satisfies
the differential equation (2.16), then Re{p(z)} > 0 for all z € D.

By taking n = 1 and P(z) = 1+ (v/2 — 1)2" in Corollary 2.11, we have the
following result.

Corollary 2.12. Let n € N. If p is analytic in D, p(0) = 1 and p satisfies the
differential equation

pz) + 1+ (V2-1)2"zp'(z) =1, z€D,
then Re{p(z)} > 0 for z € D.

Theorem 2.13. For given «, 8 and n be real numbers such that —7/2 < a <
m/2,0< B <cosa andn >0, let

bo = 2B cosa(cosa — B) + fn(—2Bcosa + 1 + 2,
by = sina(cosa — 8 — Bn),

b = Bn.
Assume that =1 > 2(cosaw — ), where
(2.25)
_ _ min{boy /532, b}, when a = 0 or cosa = B(1 + 1),
Er=Ei(e, B,m) =14 .
min{g(p1), g(p2), ba},  otheruise

with

bax? + 2b1x + by
2.26 =
(2.26) g(x) 22 + B2
and

a8 —bo + (=1)'\/(b2B? — bo)? + 4073
Pi = 2, s
Let P : D — C with

ie{1,2}.

(1]

1

z € D.
If p is analytic in D, p(0) = 1 and p satisfies the differential equation (2.16),
then p € Pg(a). Furthermore, if 0 < o < w/2, then p € Qp(l — (2/m)a).

Proof. Let us define g and h as given (2.4) and (2.5), respectively. And suppose
that ¢ is not subordinate to h. Then we have zyp € D and ¢, € 9D\ {1} satisfying
(2.6) and (2.10).

By (2.16), we get

(228) Re{P(zo)} — Re { el _ nma’} _ IB(COSOé — mna) + psina

B+ip B2+ p? ’
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where o is given by (2.9). Since m > 1, ¢ < 0 and 1 > 0, (2.28) implies
cosa —no) + psina 9(p)
B 2 = cosa— )’
where ¢ is given by (2.26). Therefore, it is sufficient to show that g(p) > =4
for all p € R, which leads a contraction to (2.27).

Assume that « = 0 or cosa = (1 + 7). Then we have by = 0. For the case
bo/3% = by, we have

g(p) = by = min{by/B%, by} ==, peR.

For the case by/3? # by, we note that g’(p) = 0 occurs only at p = 0. Also, we
have

(2.29) lim g(p) = lim g(p) = bs.

p—00 p——00

Re{P(z)} > Al

Therefore, we get

g(p) Zmin{bo/ﬁ2,b2}25h peRv

which contradicts (2.27).

Now we assume that o # 0 and cosa # (1 + 7). Then we have by # 0 and
g'(p) = 0 occurs when p = p; or ps. Since the equalities in (2.29) hold again,
we get

9(p) = min{g(p1),9(p2),b2} =Z1, pER,
which contradicts (2.27). Thus we have Re{el®p(z)} > 3 for all z € D.
For 0 < o < 1, it holds that

bg.’EQ — 2b1(£ + bo

Ei(—a,B,n) = gnel]{(} 221 32
i byi? + 2b1% + by
FER 72 + 32
= Ei(a, B,n),
where 7 = —z. Thus we have Re{e™%p(2)} > 3 for all z € D, which follows
that p € Qg(1 — (2/m)c). It completes the proof of Theorem 2.13. O

Next, we give a similar result with Theorem 2.13 for the case n < 0. We
omit the proof of following result because it is so analogous to the proof of
Theorem 2.13.

Theorem 2.14. Let n € R with n < 0. And let o, B, by, b1, ba, p1 and po
be the quantities defined as in Theorem 2.13. Assume that 2o < 2(cosa — f3),
where
(2.30)

_ — max{by/B2, by}, when o = 0 or cosa = B(1 +n),
:2:::2(a,5,n):{ {bo/ B b2} A )

max{g(p1),9(p2),b2}, otherwise,
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where g is defined by (2.26). Let P : D — C with

Re {P =2 D.
e{P(2)} > eosa— )’ z €
If p is analytic in D, p(0) = 1 and p satisfies the differential equation (2.16),
then p € Pg(a). Furthermore, if 0 < o < w/2, then p € Qp(l — (2/7)a).

If we put @ = 0 in Theorems 2.13 and 2.14, then we have the following
corollaries.

Corollary 2.15. Let P: D — C with Re{P(z)} < ©1, where
0<B<1/2andn> 21— B)/8,

1/2<B<land2(1-B)/B<n<2(1-75)/(28-1),
Z00) when 1/2 < 8 < 1 andy > 2(1 - B)/(26 - 1).

0,— %, when

If p is analytic in D, p(0) = 1 and p satisfies the differential equation (2.16),
then Re{p(z)} > B for all z € D.

Corollary 2.16. Let P : D — C with Re{P(z)} > O, where

%7 when1/2 < B <1andn <2(1-8)/(1-28),

O2 = { 21n(1-5) when{0<ﬁ§1/2 andn < —2,

28 1/2<B<2/3and2(1—B)/(1—-28) <n< —2.

If p is analytic in D, p(0) = 1 and p satisfies the differential equation (2.16),
then Re{p(z)} > B for all z € D.

3. Sufficient conditions for spirallike and strongly starlike functions

Corollary 3.1. Let k, a, 8 and \ be real numbers such that k > 0, —7/2 <
a<m/2,0< B <cosa, A>0 and

—2(cos a — f3) cos 2
cos o '

A>

If f € A satisfies

(1) o oo £
> Ak, o, 8,)), z€D,

and A(k, o, B,A) < 1, where A is given by (2.3), then f € Sj(a), or f €
SS5(1 - (2/m)a).

In particular, by putting A = 1 and a« = 0 or Kk = 1 and o = 0 in Corol-
lary 3.1, we have the following corollaries.
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Corollary 3.2. If a function f € A satisfies the condition
2f'(z) | 2f'(2) 1L B
Re{ 5+t b o (-5 ) em,
then f € S5(0).

Corollary 3.3. If a function f € A satisfies the condition
2f'(2) 2f'(z) 2f"(2) [y
Re{ ) {(1 —-A) ) +A <1—|— 70 >}} > 5(25 +p/A=1), zeD,
then f € S5(0).
For f € A, setting p(z) = zf'(2)/f(2) in (2.16) gives a differential equation
(3.1) (n+ P(2))2f(2)f'(2) + 022 f(2) f"(2) =022 (f'(2))* = (f(2))*.
So, by Theorems 2.8, 2.10, 2.13 and 2.14, we have the following results.

Corollary 3.4. Let a, 8 and n be real numbers such that —w/2 < a < 7/2,
0<pB <cosaandn>0. Let P: 1D — C with

VA
2(cosar — 3)°
where A is given by (2.17). If f € A satisfies (3.1), then f € Si(a), or
[eS8S5(1 - (2/m)a).

Corollary 3.5. Let a and n be real numbers such that —7/2 < a < w/2 and
n>0. Let P: D — C with

P(2)] < Vneosta+n2(1 —sina)?
- COS &

If f € A satisfies (3.1), then f € S§(a), or f € SS5(1 — (2/7)a).

Corollary 3.6. For given a, B and n be real numbers such that —m/2 < a <

7/2,0 < 8 < cosa and n > 0. Assume that Z; > 2(cosa — ), where Zq is
given by (2.25). Let P : 1D — C with

|P(z)] < zeD,

, z€D.

Re{P(2)} < 2cosa—f)’

If f € A satisfies (3.1), then f € Si(a), or f € SS5(1 — (2/7)a).

z € D.

Corollary 3.7. For given a, B and n be real numbers such that —7/2 < a <
7/2,0 < 8 < cosa and n > 0. Assume that 25 < 2(cosa — f8), where 2y is
given by (2.30). Let P : 1D — C with

—_

Eo
Re{P(z)}> m, z € D.

If f € A satisfies (3.1), then f € Si(a), or f € SS5(1 — (2/7)a).

We end this paper with suggesting a geometric property of an integral op-
erator defined on A.
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Corollary 3.8. Let f € S and 8 and v be real numbers such as 3 # 0 and
B+v>0.If

+7‘ - V(B +7)costa+ (1 —sina)Q’ €D,
cos o
then F(2)
2F' (2 T
arg (ﬁ 0 —&-7)‘ < 5% z €D,
where F' is the integral operator defined by
z 1/8
(3.2) F(z) = [W/ fﬂ(t)tv—l] .
27 0
Proof. Let
1 2f'(2) >
Plz)=—|(p +
=55 (55
and
B+ 7
(3.3) o) = Lo fﬂ r
Then P and p are analytic in D with P = p(0) = 1. By a simple calculation,
we have 1
/
zp' (2) + P(2)p(z) = 1.
() + PEp()

By using Theorem 2.10 with n = 1/(8 + ), we obtain that

|argp(2)] < g —a, zeD.

From (3.2) and (3.3), we easily see that F/(z) = f(2)[p(2)]'/?. Since
2F' (2 B+
B &) V= :
F(z) p(2)
the conclusion of Corollary 3.8 immediately follows. O
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