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THE GROWTH OF BLOCH FUNCTIONS IN SOME SPACES

Wenwan Yang and Junming Zhugeliu

Abstract. Suppose f belongs to the Bloch space with f(0) = 0. For

0 < r < 1 and 0 < p < ∞, we show that

Mp(r, f) =

(
1

2π

∫ 2π

0
|f(reit)|pdt

)1/p

≤
(

Γ( p
2
+ 1)

Γ( p
2
+ 1− k)

)1/p

ρB

(
log

1

1− r2

)1/2

,

where ρB(f) = supz∈D(1 − |z|2)|f ′(z)| and k is the integer satisfying

0 < p− 2k ≤ 2. Moreover, we prove that for 0 < r < 1 and p > 1,

∥fr∥Bq ≤ r ρB(f)

(
1

(1− r2)(q − 1)

)1/q

,

where fr(z) = f(rz) and ∥ · ∥Bq is the Besov seminorm given by

∥f∥Bq =

(∫
D
|f ′(z)|q(1− |z|2)q−2dA(z)

)
.

These results improve previous results of Clunie and MacGregor.

1. Introduction

Let H(D) denote the space of holomorphic functions on the unit disk D =
{z ∈ C : |z| < 1}. If 0 < r < 1 and 0 < p < ∞, for f ∈ H(D), we set

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reit)|pdt
)1/p

.

The Hardy space Hp consists of those functions f ∈ H(D) for which

∥f∥Hp = sup
0<r<1

Mp(r, f) < ∞.

The Bloch space B consists of those f ∈ H(D) for which

ρB(f) = sup
z∈D

(1− |z|2)|f ′(z)| < ∞.
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The Bloch space is a Banach space with the norm ∥ · ∥B defined by

∥f∥B = |f(0)|+ ρB(f), f ∈ B.

Notation: Throughout this paper, we write U ≲ V (or V ≳ U) for U ≤ cV for
a positive constant c, and moreover U ≈ V for both U ≲ V and V ≲ U .

The well-known Hardy convexity theorem [5] says that Mp(r, f) is an in-
creasing function of r and logMp(r, f) is a convex function of log r. In [9],

Mashreghi showed that d
drMp(r, f) = o(log r). Analogous to the Hardy con-

vexity theorem, area integral means of analytic functions were studied in [3],
[13] and [15].

Clunie and MacGregor [2] and Makarov [8] proved that if f ∈ B, then for
0 < p < ∞,

Mp(r, f) = O

((
log

1

1− r

)1/2
)

as r → 1.(1.1)

Let 0 < r < 1. If we write fr(z) = f(rz), then Mp(r, f) = ∥fr∥Hp . It is
shown in [4] that the order 1

2 in the right of (1.1) is sharp in the sense that
there is a function f ∈ B such that

Mp(r, f) ≈
(
log

1

1− r

)1/2

as r → 1.

The fact that the right hand side of (1.1) is unbounded implies that the Bloch
space is not contained in the Hardy space.

In [11, Theorem 8.9], it is proved that if f ∈ B with f(0) = 0, then

M2n
2n (r, f) ≤ n!ρB(f)

(
log

1

1− r2

)n

(1.2)

for 0 < r < 1 and n = 0, 1, 2, . . . . In this paper, we intend to improve (1.1)
and generalize (1.2) to the following form.

Theorem 1. Let 0 < r < 1 and f ∈ B with f(0) = 0. For 0 < p < ∞, let k be
the integer such that 0 < p− 2k ≤ 2. Then

Mp
p (r, f) ≤

Γ(p2 + 1)

Γ(p2 + 1− k)
ρpB

(
log

1

1− r2

)p/2

.(1.3)

Notice that

log
1

1− r2
= r2 +

r4

2
+O(r6) as r → 0.

We have the following corollary.

Corollary 2. In the conditions of Theorem 1, we have

Mp(r, f) ≤
(

Γ(p2 + 1)

Γ(p2 + 1− k)

)1/p

ρB(f) r as r → 0.(1.4)
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It is well known that B is the maximal Möbius invariant function space.
There are several other Möbius invariant function spaces contained in B. One
is the Qp space defined by

Qp =

{
f ∈ H(D) : ∥f∥2Qp

= sup
a∈

∫
D
|f ′(z)|2

(
1−

∣∣∣∣ a− z

1− āz

∣∣∣∣2
)p

dA(z) < ∞

}
,

where 0 ≤ p < ∞ and dA(w) = π−1dx dy is the normalized Lebesgue measure
on D. It is known that Q0 is the Dirichlet space D, Q1 is the so-called BMOA,
and when p > 1, Qp = B. The growth of ∥fr∥Qp

is characterized in [1], see also
[14, Theorem 7.1.4]. It is proved that

∥fr∥Qp
≤
(∫ r

0

(
log

r

t

)p dt2

(1− t2)2

)1/2

ρB(f),(1.5)

where 0 < r < 1 and p > 0. When p = 1, this inequality is given by Korenblum
in [7]. Here we intend to characterize the case p = 0, that is, the growth of
fr in the seminorm of the Dirichlet space. More generally, for 1 < q < ∞, the
Besov space Bq is defined as

Bq =

{
f ∈ H(D) : ∥f∥qBq

=

∫
D
|f ′(z)|q

(
1− |z|2

)q−2

dA(z) < ∞
}
.

Trivially, B2 = Q0 = D. Moreover, B1 is the minimal Möbius invariant space
given by

B1 =

{
f ∈ H(D) : ∥f∥B1

=

∫
D
|f ′′(z)|dA(z) < ∞

}
.

The Besov space is another Möbius invariant space on D.
We have the following theorem.

Theorem 3. Let 0 < r < 1 and f ∈ B with f(0) = 0. We have
(1) For 1 < q < ∞,

∥fr∥Bq ≤ rρB(f)

(
1

(1− r2)(q − 1)

)1/q

.(1.6)

(2) If f ′(0) = 0, then

∥fr∥B1 ≤ r2ρ̃B(f)

(1− r2)
,(1.7)

where ρ̃B(f) = supz∈D(1− |z|2)2|f ′′(z)|.

In particular, let q = 2 in Theorem 3, then

∥fr∥D ≤ rρB(f)

(
1

(1− r2)

)1/2

.

This is just the case p = 0 in (1.5).
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2. Preliminaries

For 0 < r < 1, 0 < p < ∞ and f ∈ H(D), the following equality is contained
in [12].

1

2π

∫ 2π

0

|f(reit)|pdt = |f(0)|p + p2

2

∫
rD

|f(w)|p−2|f ′(w)|2 log r

|w|
dA(w).(2.1)

Let w = rz in the right-hand side in (2.1), then we have

1

2π

∫ 2π

0

|f(reit)|pdt= |f(0)|p+ p2r2

2

∫
D
|f(rz)|p−2|f ′(rz)|2 log 1

|z|
dA(z).(2.2)

The following identity belongs to Hardy. We quoted it from [11, p. 174].

d

dr

(
r
d

dr

∫ 2π

0

|f(reit)|pdt
)

= rp2
∫ 2π

0

|f(reit)|p−2|f ′(reit)|2dt(2.3)

for f ∈ H(D).
The following lemma is quoted from [16, Theorem 5.4].

Lemma 4. If g ∈ H(D), then g ∈ B if and only if the function (1−|z|2)2|g′′(z)|
is bounded. Moreover, if g(0) = g′(0) = 0, then

ρ̃B(g) = sup
z∈D

(1− |z|2)2|g′′(z)| ≈ ρB(g).

The following lemma is useful in our verification.

Lemma 5. If 0 < r < 1, 1 < p < ∞, then

(1)

∫ 1

0

s

(1− r2s2)2
log

1

s
ds =

1

4r2
log

1

1− r2
.

(2)

∫ 1

0

(1− s2)p−2s

(1− r2s2)p
ds =

1

2(1− r2)(p− 1)
.

(3)

∫ 1

0

s

(1− r2s2)2
ds =

1

2(1− r2)
.

(4)
d

dr

(
r
d

dr

)(
log

1

1− r2

)p

=
4pr

((
log 1

1−r2

)p−1
+r2(p−1)

(
log 1

1−r2

)p−2
)

(1−r2)2 .

Proof. Straightforward computation gives this lemma. □

3. Proof of Theorems

In order of give the proof of Theorem 1, we prove the following theorem,
which is weaker that Theorem 1.

Theorem 6. Let 0 < r < 1 and f ∈ B with f(0) = 0. For 0 < p < ∞, we have

Mp(r, f) ≤ max
{
1,

p

2

}
ρB(f)

(
log

1

1− r2

)1/2

.(3.1)
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Proof. When p = 2, (2.2) gives that

(M2(r, f))
2 = 2r2

∫
D
|f ′(rz)|2 log 1

|z|
dA(z)

≤ 2r2
∫
D

(
ρB(f)

1− r2|z|2

)2

log
1

|z|
dA(z)

= 2r2ρ2B(f)
1

π

∫ 2π

0

∫ 1

0

s

(1− r2s2)2
log

1

s
dsdt

= ρ2B(f) log
1

1− r2
.

The last equality follows from Lemma 5(1).
Similarly, when p > 2, we can use Hölder’s inequality to get that

(Mp(r, f))
p =

p2r2

2

∫
D
|f(rz)|p−2|f ′(rz)|2 log 1

|z|
dA(z)

≤ p2r2

2

∫
D
|f(rz)|p−2

(
ρB(f)

1− r2|z|2

)2

log
1

|z|
dA(z)

=
p2r2ρ2B(f)

2

∫ 1

0

1

π

∫ 2π

0

|f(rseit)|p−2 dt
s

(1− r2s2)2
log

1

s
ds

≤ p2r2ρ2B(f)

2π

∫ 1

0

(∫ 2π

0

|f(rseit)|p dt
) p−2

p

(2π)
2
p

s log 1
s ds

(1− r2s2)2

= p2r2ρ2B(f)

∫ 1

0

(
1

2π

∫ 2π

0

|f(rseit)|p dt
) p−2

p s log 1
s ds

(1− r2s2)2

= p2r2ρ2B(f)

∫ 1

0

(Mp(rs, f))
p−2 s log 1

s ds

(1− r2s2)2
.

Since Mp(r, f) is a positive increasing function of r, we have

Mp(rs, f) ≤ Mp(r, f), 0 < s < 1.

This implies that

(Mp(r, f))
2 ≤ p2r2ρ2B(f)

∫ 1

0

s log 1
s ds

(1− r2s2)2
=

p2ρ2B(f)

4
log

1

1− r2
.

When 0 < p < 2, it follows from the Hölder’s inequality that

(Mp(r, f))
p =

1

2π

∫ 2π

0

|f(reit)|pdt

≤ 1

2π

(∫ 2π

0

|f(reit)|2dt
)p/2

· (2π)
2−p
2

= (M2(r, f))
p
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≤ ρpB(f)

(
log

1

1− r2

)p/2

.

This completes the proof. □

Now we are ready to prove Theorem 1. It is inspired by the proof of [11,
Theorem 8.9].

Proof of Theorem 1. When 0 < p ≤ 2, it is contained in Theorem 6. Thus
(1.3) holds when 2k − 2 < p ≤ 2k with k = 1. We suppose that it also holds
for some k ∈ N. That is,

1

2π

∫ 2π

0

|f(reit)|pdt ≤
Γ(p2 + 1)

Γ(p2 + 1− k)
ρpB

(
log

1

1− r2

)p/2

(3.2)

for 2k − 2 < p ≤ 2k.
When 2k < p ≤ 2k + 2, (2.3) gives that

1

2π

d

dr

(
r
d

dr

∫ 2π

0

|f(reit)|pdt
)

=
rp2

2π

∫ 2π

0

|f(reit)|p−2|f ′(reit)|2dt

≤ rp2ρ2B
2π(1− r2)2

∫ 2π

0

|f(reit)|p−2dt

≤
rp2ρpBΓ(

p
2 )

(1− r2)2Γ(p2 − k)

(
log

1

1− r2

) p
2−1

,

where the last inequality follows from (3.2). Lemma 5(4) gives that

r
(
log 1

1−r2

)q−1

(1− r2)2
≤ 1

4q

d

dr

(
r
d

dr

)(
log

1

1− r2

)q

for q > 1. Let q = p
2 , then we have

rp2ρpBΓ(
p
2 )

(1− r2)2Γ(p2 − k)

(
log

1

1− r2

) p
2−1

≤
pρpBΓ(

p
2 )

2Γ(p2 − k)

d

dr

(
r
d

dr

)(
log

1

1− r2

) p
2

=
ρpBΓ(

p
2 + 1)

Γ(p2 + 1− (k + 1))

d

dr

(
r
d

dr

)(
log

1

1− r2

) p
2

.

Thus we arrive at

d

dr

(
r
d

dr
Mp

p (r, f)

)
≤

ρpBΓ(
p
2 + 1)

Γ(p2 + 1− (k + 1))

d

dr

(
r
d

dr

)(
log

1

1− r2

) p
2

.

Integrating twice gives the desired result since both sides vanish for r → 0. □
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Remark 7. Note that Theorems 1 and 6 coincide when 0 < p ≤ 4. However,
Stirling’s formula gives that(

Γ(p2 + 1)

Γ(p2 + 1− k)

)1/p

( p

2e

)1/2 = 1 as p → ∞.

Then from Theorem 1 we deduce

Mp(r, f) ≤
( p

2e

)1/2
ρB

(
log

1

1− r2

)1/2

as p → ∞.

This upper bound is better than the upper bound in Theorem 6 for large p.

Now we give a proof of Theorem 3.

Proof of Theorem 3. Similar to the proof of Theorem 6, for q > 1, we have

∥fr∥qBq
=

∫
D
rq|f ′(rz)|q(1− |z|2)q−2dA(z)

≤ rqρqB(f)

∫
D

(1− |z|2)q−2

(1− |rz|2)q
dA(z)

= rqρqB(f)
1

π

∫ 2π

0

∫ 1

0

(1− s2)q−2s

(1− r2s2)q
dsdt

= rqρqB(f)
1

(1− r2)(q − 1)
,

where the last equality follows from Lemma 5(2). Moreover, Lemma 4 implies
that

∥fr∥B1
=

∫
D
r2|f ′′(rz)|dA(z)

≤ r2ρ̃B(f)

∫
D

1

(1− |rz|2)2
dA(z)

= r2ρ̃B(f)
1

π

∫ 2π

0

∫ 1

0

s

(1− r2s2)2
dsdt

= r2ρ̃B(f)
1

(1− r2)
,

where the last equality follows from Lemma 5(3). This completes the proof. □

More generally, let α ≥ 0 and p > 0, the Dirichlet-type space Dp
α is defined

as

Dp
α =

{
f ∈ H(D) : ∥f∥pDp

α
=

∫
D
|f ′(z)|p(1− |z|2)αdA(z) < ∞

}
.
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For γ > 0, the Bloch type space Bγ is given by

Bγ =

{
f ∈ H(D) : ∥f∥Bγ

= sup
z∈D

|f ′(z)|(1− |z|2)γ < ∞
}
.

Similar to ([6, Theorem 1.7] and [10, Proposition 2.7]), we obtained a related
estimation formula. If f ∈ Bγ with f(0) = 0, then similar to the proof of
Theorem 3, we have

∥fr∥pDp
α
=

∫
D
rp|f ′(rz)|p(1− |z|2)αdA(z)

≤ rp∥f∥pBγ

∫
D

(1− |z|2)α

(1− |rz|2)pγ
dA(z)

= rp∥f∥pBγ

1

π

∫ 2π

0

∫ 1

0

(1− s2)αs

(1− r2s2)pγ
dsdt

= 2rp∥f∥pBγ

∫ 1

0

(1− s2)αs

(1− r2s2)pγ
ds.

It can be checked that∫ 1

0

(1− s2)αs

(1− r2s2)pγ
ds =

2F1([1, pγ]; [2 + α]; r2)

2(α+ 1)
,

where 2F1([1, pγ]; [2 + α]; r2) is the hypergeometric function given by

2F1([1, pγ]; [2 + α]; r2) =

∞∑
k=0

r2k · (1)k · (pγ)k
k! · (2 + α)k

,

and (α)k is the Pochhammer symbol defined by

(α)k =
Γ(α+ k)

Γ(α)
.

Notice that

(1)k = k!,

we have

2F1([1, pγ]; [2 + α]; r2) =
∞∑
k=0

r2k · (pγ)k
(2 + α)k

=
∞∑
k=0

r2k · Γ(pγ + k) · Γ(2 + α)

Γ(pγ) · Γ(2 + α+ k)
.

For fixed p, α and γ, it follows from Stirling’s formula that

Γ(pγ + k) · Γ(2 + α)

Γ(pγ) · Γ(2 + α+ k)
≈ kpγ−α−2 as k → ∞.

This implies that

2F1([1, pγ]; [2 + α]; r2)


≲ (1− r2)α+1−pγ if pγ − α− 1 > 0;

≲ log
1

1− r2
if pγ − α− 1 = 0;

is bounded if pγ − α− 1 < 0,
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as r → 1. Thus we have the following corollary.

Corollary 8. Let p > 0, α ≥ 0 and γ > 0. For f ∈ Bγ with f(0) = 0, we have:
(1) If pγ − α− 1 < 0, then Bγ ⊂ Dp

α with ∥f∥Dp
α
≲ ∥f∥Bγ

.
(2) If pγ − α− 1 = 0, then

∥fr∥Dp
α
≲ r∥f∥Bγ

(
log

1

1− r2

)1/p

.

(3) If pγ − α− 1 > 0, then

∥fr∥Dp
α
≲ r∥f∥Bγ

(
1

1− r2

) pγ−α−1
p

.
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