Acknowledgement
We thank the reviewers for their valuable comments, which improved the paper's presentation.
References
- J. K. Baksalary, O. M. Baksalary, and J. Gross, On some linear combinations of hypergeneralized projectors, Linear Algebra Appl. 413 (2006), no. 2-3, 264-273. https://doi.org/10.1016/j.laa.2005.09.005
- J. Baksalary, O. Baksalary, and X. Liu, Further properties of generalized and hypergeneralized projectors, Linear Algebra Appl. 389 (2004), 295-303. https://doi.org/10.1016/j.laa.2004.03.013
- J. K. Baksalary, O. M. Baksalary, X. Liu, and G. Trenkler, Further results on generalized and hypergeneralized projectors, Linear Algebra Appl. 429 (2008), no. 5-6, 1038-1050. https://doi.org/10.1016/j.laa.2007.03.029
- J. K. Baksalary and X. Liu, An alternative characterization of generalized projectors, Linear Algebra Appl. 388 (2004), 61-65. https://doi.org/10.1016/j.laa.2004.01.010
- M. Bresar and P. Semrl, Linear preservers on B(X), Linear operators (Warsaw, 1994), 49-58, Banach Center Publ. 38, Polish Acad. Sci. Inst. Math., Warsaw.
- A. Chahbi, On linear maps that preserve the generalized projection in separable hilbert space, Math-Recherche & Applications. 15 (2016), 44-49.
- G. Dolinar, Maps on B(H) preserving idempotents, Linear Multilinear Algebra 52 (2004), no. 5, 335-347. https://doi.org/10.1080/03081080410001667807
- M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), no. 1, 139-141. https://doi.org/10.1090/S0002-9904-1978-14442-5
- H.-K. Du and Y. Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005), 313-318. https://doi.org/10.1016/j.laa.2004.11.027
- F. G. Frobenius, Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss, Berlin, 1897.
- J. Gross, Remarks on the sharp partial order and the ordering of squares of matrices, Linear Algebra Appl. 417 (2006), no. 1, 87-93. https://doi.org/10.1016/j.laa.2005.10.036
- J. Gross and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463-474. https://doi.org/10.1016/S0024-3795(96)00541-1
- S. Kabbaj, A. Charifi, and A. Chahbi, Linear maps preserving the generalized projection, Thai J. Math. 13 (2015), no. 2, 381-389.
- L. Lebtahi and N. Thome, A note on k-generalized projections, Linear Algebra Appl. 420 (2007), no. 2-3, 572-575. https://doi.org/10.1016/j.laa.2006.08.011
- X. M. Li and J. H. Zhang, Maps on B(H) preserving projections, Adv. Math. (China) 43 (2014), no. 3, 425-428.
- J. Mashreghi, E. Fricain, and W. Ross, Invariant Subspaces of the Shift Operator, Contemporary Mathematics, 638, Amer. Math. Soc., Providence, RI, 2015. https://doi.org/10.1090/conm/638
- L. Molnar, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, 1895, Springer, Berlin, 2007.
- A. N. Motlagh, A. Bodaghi, and S. Grailoo Tanha, Linear maps on 𝓑(𝓗) preserving some operator properties, Proyecciones 40 (2021), no. 6, 1357-1365. https://doi.org/10.22199/issn.0717-6279-4360
- G. J. Murphy, C∗-Algebras and Operator Theory, Academic Press, Inc., Boston, MA, 1990.
- C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465. http://projecteuclid.org/euclid.mmj/1028999848 1028999848
- S. Radosavljevic and D. S. Djordjevic, On pairs of generalized and hypergeneralized projections in a Hilbert space, Funct. Anal. Approx. Comput. 5 (2013), no. 2, 67-75.
- G. W. Stewart, A note on generalized and hypergeneralized projectors, Linear Algebra Appl. 412 (2006), no. 2-3, 408-411. https://doi.org/10.1016/j.laa.2005.07.022
- U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Arkiv Fysik. 23 (1963), 307-340.
- L. Yang and L. Zhang, Maps on 𝓑(𝓗) preserving involution, Linear Algebra Appl. 431 (2009), no. 5-7, 666-672. https://doi.org/10.1016/j.laa.2009.03.017