DOI QR코드

DOI QR Code

MAPS PRESERVING GENERALIZED PROJECTION OPERATORS

  • Hassane Benbouziane (Department of Mathematics Faculty of Sciences Dhar El Mahraz University Sidi Mohammed Ben Abdellah) ;
  • Kaddour Chadli (Department of Mathematics Faculty of Sciences Dhar El Mahraz University Sidi Mohammed Ben Abdellah) ;
  • Mustapha Ech-cherif El Kettani (Department of Mathematics Faculty of Sciences Dhar El Mahraz University Sidi Mohammed Ben Abdellah)
  • Received : 2023.12.01
  • Accepted : 2024.05.28
  • Published : 2024.07.31

Abstract

Let 𝓑(H) be the algebra of all bounded linear operators on a Hilbert space H with dim(H) > 2. Let 𝒢𝒫(H) be the subset of 𝓑(H) of all generalized projection operators. In this paper, we give a complete characterization of surjective maps 𝚽 : 𝓑(H) → 𝓑(H) satisfying A-𝛌B ∈ 𝒢𝒫(H) ⇔ 𝚽(A) - 𝛌𝚽(B) ∈ 𝒢𝒫(H) for any A, B ∈ 𝓑(H) and 𝛌 ∈ ℂ.

Keywords

Acknowledgement

We thank the reviewers for their valuable comments, which improved the paper's presentation.

References

  1. J. K. Baksalary, O. M. Baksalary, and J. Gross, On some linear combinations of hypergeneralized projectors, Linear Algebra Appl. 413 (2006), no. 2-3, 264-273. https://doi.org/10.1016/j.laa.2005.09.005 
  2. J. Baksalary, O. Baksalary, and X. Liu, Further properties of generalized and hypergeneralized projectors, Linear Algebra Appl. 389 (2004), 295-303. https://doi.org/10.1016/j.laa.2004.03.013 
  3. J. K. Baksalary, O. M. Baksalary, X. Liu, and G. Trenkler, Further results on generalized and hypergeneralized projectors, Linear Algebra Appl. 429 (2008), no. 5-6, 1038-1050. https://doi.org/10.1016/j.laa.2007.03.029 
  4. J. K. Baksalary and X. Liu, An alternative characterization of generalized projectors, Linear Algebra Appl. 388 (2004), 61-65. https://doi.org/10.1016/j.laa.2004.01.010 
  5. M. Bresar and P. Semrl, Linear preservers on B(X), Linear operators (Warsaw, 1994), 49-58, Banach Center Publ. 38, Polish Acad. Sci. Inst. Math., Warsaw. 
  6. A. Chahbi, On linear maps that preserve the generalized projection in separable hilbert space, Math-Recherche & Applications. 15 (2016), 44-49. 
  7. G. Dolinar, Maps on B(H) preserving idempotents, Linear Multilinear Algebra 52 (2004), no. 5, 335-347. https://doi.org/10.1080/03081080410001667807 
  8. M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), no. 1, 139-141. https://doi.org/10.1090/S0002-9904-1978-14442-5 
  9. H.-K. Du and Y. Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005), 313-318. https://doi.org/10.1016/j.laa.2004.11.027 
  10. F. G. Frobenius, Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss, Berlin, 1897. 
  11. J. Gross, Remarks on the sharp partial order and the ordering of squares of matrices, Linear Algebra Appl. 417 (2006), no. 1, 87-93. https://doi.org/10.1016/j.laa.2005.10.036 
  12. J. Gross and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463-474. https://doi.org/10.1016/S0024-3795(96)00541-1 
  13. S. Kabbaj, A. Charifi, and A. Chahbi, Linear maps preserving the generalized projection, Thai J. Math. 13 (2015), no. 2, 381-389. 
  14. L. Lebtahi and N. Thome, A note on k-generalized projections, Linear Algebra Appl. 420 (2007), no. 2-3, 572-575. https://doi.org/10.1016/j.laa.2006.08.011 
  15. X. M. Li and J. H. Zhang, Maps on B(H) preserving projections, Adv. Math. (China) 43 (2014), no. 3, 425-428. 
  16. J. Mashreghi, E. Fricain, and W. Ross, Invariant Subspaces of the Shift Operator, Contemporary Mathematics, 638, Amer. Math. Soc., Providence, RI, 2015. https://doi.org/10.1090/conm/638 
  17. L. Molnar, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, 1895, Springer, Berlin, 2007. 
  18. A. N. Motlagh, A. Bodaghi, and S. Grailoo Tanha, Linear maps on 𝓑(𝓗) preserving some operator properties, Proyecciones 40 (2021), no. 6, 1357-1365.  https://doi.org/10.22199/issn.0717-6279-4360
  19. G. J. Murphy, C∗-Algebras and Operator Theory, Academic Press, Inc., Boston, MA, 1990. 
  20. C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465. http://projecteuclid.org/euclid.mmj/1028999848  1028999848
  21. S. Radosavljevic and D. S. Djordjevic, On pairs of generalized and hypergeneralized projections in a Hilbert space, Funct. Anal. Approx. Comput. 5 (2013), no. 2, 67-75. 
  22. G. W. Stewart, A note on generalized and hypergeneralized projectors, Linear Algebra Appl. 412 (2006), no. 2-3, 408-411. https://doi.org/10.1016/j.laa.2005.07.022 
  23. U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Arkiv Fysik. 23 (1963), 307-340. 
  24. L. Yang and L. Zhang, Maps on 𝓑(𝓗) preserving involution, Linear Algebra Appl. 431 (2009), no. 5-7, 666-672. https://doi.org/10.1016/j.laa.2009.03.017