DOI QR코드

DOI QR Code

ON DIFFERENTIAL IDENTITIES INVOLVING PARTITIONING IDEALS OF SEMIRINGS

  • Liaqat Ali (Department of Mathematics Govt. MAO Graduate College) ;
  • Muhammad Aslam (Department of Mathematics GC University) ;
  • Ghulam Farid (Department of Mathematics COMSATS Islamabad, Attock Campus) ;
  • Tariq Mahmood (Department of Mathematics GC University)
  • Received : 2023.10.28
  • Accepted : 2024.02.23
  • Published : 2024.07.31

Abstract

In this article, we study a certain class of partitioning ideals known as Q-ideals, in semirings. Main objective is to investigate differential identities linking a semiring S to its prime Q-ideal IQ, which ensure the commutativity and other features of S/IQ.

Keywords

Acknowledgement

The authors wish to express their sincere thanks to the referee for many useful comments.

References

  1. L. Ali, M. Aslam, G. Farid, and S. Abdel-Khalek, On differential identities of Jordan ideals of semirings, AIMS Math. 6 (2021), no. 7, 6833-6844. https://doi.org/10.3934/math.2021400
  2. L. Ali, Y. A. Khan, A. A. Mousa, S. Abdel-Khalek, and G. Farid, Some differential identities of MA-semirings with involution, AIMS Math. 6 (2021), no. 3, 2304-2314. https://doi.org/10.3934/math.2021139
  3. R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41 (1973), 67-74. https://doi.org/10.2307/2038818
  4. H.-J. Bandelt and M. Petrich, Subdirect products of rings and distributive lattices, Proc. Edinburgh Math. Soc. 25 (1982), no. 2, 155-171. https://doi.org/10.1017/S0013091500016643
  5. J. Bergen, I. N. Herstein, and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), no. 1, 259-267. https://doi.org/10.1016/0021-8693(81)90120-4
  6. M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93. https://doi.org/10.1017/S0017089500008077
  7. S. Ebrahimi Atani, The zero-divisor graph with respect to ideals of a commutative semiring, Glas. Mat. Ser. III 43(63) (2008), no. 2, 309-320. https://doi.org/10.3336/gm.43.2.06
  8. S. Ebrahimi Atani and R. Ebrahimi Atani, Some remarks on partitioning semirings, An. S,tiint,. Univ. "Ovidius" Constant,a Ser. Mat. 18 (2010), no. 1, 49-61.
  9. H. El Mir, A. Mamouni, and L. Oukhtite, Commutativity with algebraic identities involving prime ideals, Commun. Korean Math. Soc. 35 (2020), no. 3, 723-731. https://doi.org/10.4134/CKMS.c190338
  10. K. G lazek, A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences, Kluwer Acad. Publ., Dordrecht, 2002. https://doi.org/10.1007/978-94-015-9964-1
  11. U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, translated from the 1993 German original, Series in Algebra, 5, World Sci. Publishing, Inc., River Edge, NJ, 1998. https://doi.org/10.1142/3903
  12. K. Is'eki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958), no. 2, 79-81. http://projecteuclid.org/euclid.pja/1195524783
  13. M. A. Javed, M. Aslam, and M. Hussain, On condition (A2) of Bandlet and Petrich for inverse semirings, Int. Math. Forum 7 (2012), no. 59, 2903-2914.
  14. D. A. Jordan, On the ideals of a Lie algebra of derivations, J. London Math. Soc. (2) 33 (1986), no. 1, 33-39. https://doi.org/10.1112/jlms/s2-33.1.33
  15. V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and its Applications, Springer Dordrecht, 1997. https://doi.org/10.1007/978-94-015-8901-7
  16. P. Kostol'anyi and F. Mi˘s'un, Alternating weighted automata over commutative semirings, Theor. Comput. Sci., 740 (2018), 01-27. https://doi.org/10.1016/j.tcs.2018.05.003
  17. T. Mahmood, L. Ali, M. Aslam, and G. Farid, On commutativity of quotient semirings through generalized derivations, AIMS Math. 8 (2023), no. 11, 25729-25739. https://doi.org/10.3934/math.20231312
  18. V. P. Maslov and S. N. Samborskii, Idempotent Analysis, Adv. Soviet Math., 13, Amer. Math. Soc., Providence, RI, 1992. https://doi.org/10.1090/advsov/013
  19. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
  20. S. Sara, M. Aslam, and M. A. Javed, On centralizer of semiprime inverse semiring, Discuss. Math. Gen. Algebra Appl. 36 (2016), no. 1, 71-84. https://doi.org/10.7151/dmgaa.1252
  21. M. K. Sen and M. R. Adhikari, On k-ideals of semirings, Internat. J. Math. Math. Sci. 15 (1992), no. 2, 347-350. https://doi.org/10.1155/S0161171292000437
  22. S. Shafiq, A study of MA-semirings, PhD Dissertation, GC University, Lahore, 2019.