DOI QR코드

DOI QR Code

The Effect of Self-efficacy for the Size Recommendation Services on Usage Intention through Perceived Ease of Use and Perceived Usefulness -Focusing on the Moderating Effect of the Filtering Types-

사이즈 추천 서비스에 대한 자기효능감이 지각된 사용용 이성과 지각된 유용성을 매개로 사용의도에 미치는 영향 -필터링 유형의 조절효과를 중심으로-

  • Sangwoo Seo (Dept. of Fashion Business, Jeonju University)
  • 서상우 (전주대학교 패션산업학과)
  • Received : 2024.02.05
  • Accepted : 2024.05.14
  • Published : 2024.08.31

Abstract

This study investigated the effect of self-efficacy on the usage intention of the size recommendation services, exploring the mediating roles of perceived ease of use and perceived usefulness. Moreover, it examined the moderating effects of filtering types on these relationships. Data were collected from 200 participants between December 11 and 13, 2023, using virtual scenarios and stimuli. Mediating and moderating effect analysis were performed using a process macro. As a result of path analysis and indirect effect analysis between individual variables, it was confirmed that the direct effect of self-efficacy for the size recommendation services on usage intention, and the indirect effect on usage intention through perceived ease of use and perceived usefulness were significant. Furthermore, as a result of the moderating effect analysis, it was found that the moderating effect of the filtering types was significant in the relationship between self-efficacy and perceived ease of use, between perceived ease of use and perceived usefulness, and between self-efficacy and usage intention.

Keywords

References

  1. Acharya, N., Sassenberg, A.-M., & Soar, J. (2023). Effects of cognitive absorption on continuous use intention of AIdriven recommender systems in e-commerce. Foresight, 25(2), 194-208. https://doi.org/10.1108/FS-10-2021-0200
  2. Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261-277. https://doi.org/10.1037/h0076477
  3. An, H., Kwon, S., & Park, M. (2019). A case study on the recommendation services for customized fashion styles based on artificial intelligence. Journal of the Korean Society of Clothing and Textiles, 43(3), 349-360. https://doi.org//10.5850/JKSCT.2019.43.3.349
  4. Ansari, A., Essegaier, S., & Kohli, R. (2000). Internet recommendation systems. Journal of Marketing Research, 37(3), 363-375. https://doi.org/10.1509/jmkr.37.3.363.18779
  5. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavior change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
  6. Bandura, A., & Wood, R. (1989). Effect of perceived controllability and performance standards on self-regulation of complex decision making. Journal of Personality and Social Psychology, 56(5), 805-814. https://doi.org/10.1037/0022-3514.56.5.805
  7. Candeias, A., Silva, I., Sousa, V., & Marcelino, J. (2023, September 18-22). Tailor: Size recommendations for high-end fashion marketplaces [Conference session]. FashionXRecsys23 held at the 17th ACM Conference on Recommender Systems, Singapore. https://doi.org/10.48550/arXiv.2401.01978
  8. Chae, J. (2010). The extended technology acceptance model according to smart clothing types. Korean Journal of Human Ecology, 19(2), 375-387. https://doi.org/10.5934/kjhe.2010.19.2.375
  9. Chae, J. M. (2016). The difference of the extended TAM in mobile fashion shopping according to consumer's purchase frequency. Journal of the Korean Society of Fashion Design, 16(3), 173-188. https://doi.org/10.18652/2016.16.3.11
  10. Chatterjee, O., Tej, J. R., & Dasaraju, N. V. (2022, July 11-15). Incorporating customer reviews in size and fit recommendation systems for fashion e-commerce [Conference session]. The SIGIR 2022 Workshop on eCommerce, Madrid, Spain. https://doi.org/10.48550/arXiv.2208.06261
  11. Chen, C. C., & Jang, H. Y. (2022). Effect of Chinese shopping platform recommendation service characteristics on consumer satisfaction and continued use intention: Moderating role of product types. Journal of Distribution and Logistics, 9(2), 25-41. https://doi.org/10.22321/jdl2022090202
  12. Choi, J. (2023, February 2). 반품의 시대 [The age of return]. Allure Korea. https://www.allurekorea.com/2023/02/02/%EB%B0%98%ED%92%88%EC%9D%98-%EC%8B%9C%EB%8C%80/
  13. Choi, Y.-J. (2021). A study on the structural relationship of the characteristics of youtube tourism information on perceived usefulness, ease, pleasure, and intention to continuous use: Application of the extended technology acceptance model. Journal of Tourism and Leisure Research, 33(7), 85-109. https://doi.org/10.31336/JTLR.2021.7.33.7.85
  14. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
  15. Deldjoo, Y., Nazary, F., Ramisa, A., McAuley, J., Pellegrini, G., Bellogin, A., & Noia, T. D. (2023). A review of modern fashion recommender systems. ACM Computing Surveys, 56(4), 1-37. https://doi.org/10.1145/3624733
  16. DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information system success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
  17. Ding, Y., Lai, Z., Mok, P. Y., & Chua, T.-S. (2023). Computational technologies for fashion recommendation: A survey. ACM Computing Surveys, 56(5), 1-45. https://doi.org/10.1145/3627100
  18. Flavian, C., Gurrea, R., & Orus, C. (2016). Choice confidence in the webrooming purchase process: The impact of online positive reviews and the motivation to touch. Journal of Consumer Behaviour, 15(5), 459-476. https://doi.org/10.1002/cb.1585
  19. Ha, Y. J., & Hwang, S. J. (2021). The effect of anthropomorphism level of the shopping chatbot, message type, and media self-efficacy on purchase intention. Journal of Fashion Business, 25(4), 79-91. https://doi.org/10.12940/jfb.2021.25.4.79
  20. Hajjar, K., Lasserre, J., Zhao, A., & Shirvany, R. (2021). Attention gets you the right size and fit in fashion. In N. Dokoohaki, S. Jaradat, H. J. Corona Pampin, & R. Shirvany (Eds.), Recommender Systems in Fashion and Retail (pp. 77-98). Springer International Publishing. https://doi.org/10.1007/978-3-030-66103-8_5
  21. Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). The Guilford Press.
  22. Hur, H. J., & Kim, W. B. (2022). Consumer acceptance intention of AI fashion chatbot service: Focusing on characteristics of chatbot's para-social presence. Journal of the Korean Society of Clothing and Textiles, 46(3), 464-480. https://doi.org/10.5850/JKSCT.2022.46.3.464
  23. Hur, H. J., & Lee, H. K. (2021). Augmented reality(AR) fashion shopping service acceptance based on consumers' technology readiness. Fashion and Textile Research Journal, 23(3), 347-357. https://doi.org/10.5805/sfti.2021.23.3.347
  24. Jang, E.-G., & Lee, J.-M. (2024). Continuous use intention of fashion AI recommendation service applying value-based adoption model. Journal of Consumer Studies, 35(1), 149-171. https://doi.org/10.35736/JCS.35.1.7
  25. Jeon, T. J., Hwang, S. J., & Choi, D. E. (2021). The effect of self-construal type, mobile product recommendation system type and fashion product type on purchase intention in mobile shopping environment. Journal of Fashion Business, 25(5), 25-37. https://doi.org/10.12940/jfb.2021.25.5.25
  26. Jeong, D. (2022). A study on the effect of the internet self-efficacy of generation MZ on use intention of luxury fashion platform: Focusing on the new exogenous mechanism of extended UTAUT. Fashion and Textile Research Journal, 24(5), 577-592. https://doi.org/10.5805/sfti.2022.24.5.577
  27. Jin, H., Ahn, J., & Sung, Y. (2021). The impact of self-construal and message framing on the persuasion of artificial intelligence recommendations. Korean Journal of Consumer and Advertising Psychology, 22(3), 319-342. https://doi.org/10.21074/kjlcap.2021.22.3.319
  28. Jo, Y. J., Lim, Y. S., Song, J. G., Chung, A. Y., Kim, G. H., & Yun, J. Y. (2023). A study on user experience according to the way of providing reasoning for recommendations: Focused on the video recommendation platform. Journal of Communication Design, 83, 166-180.
  29. Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2), 183-213. https://doi.org/10.2307/249751
  30. Kim, C. E. (2021a). Trends of size recommendation technology in online fashion retailing. Journal of Korean Traditional Costume, 24(1), 79-90. https://doi.org/10.16885/jktc.2021.3.24.1.79
  31. Kim, C. E. (2021b). Size recommendation technology convergence in e-shopping: Roles of service quality information credibility and satisfaction on purchase intention. Journal of the Korea Convergence Society, 12(7), 7-17. https://doi.org/10.15207/JKCS.2021.12.7.007
  32. Kim, C. E. (2021c). The influence of service quality of size recommendation technology using data convergence on satisfaction through perceived value in online fashion retailing. The Korean Society of Science & Art, 39(2), 95-111. https://doi.org/10.17548/ksaf.2021.03.30.95
  33. Kim, J.-S., & Na, Y.-J. (2020). Online shopping: Satisfaction of return services and return reasons according to types of fashion shopping malls. Korean Journal of the Science of Emotion and Sensibility, 23(1), 3-16. https://doi.org/10.14695/KJSOS.2020.23.1.3
  34. Kostat. (2024, February 1). 2023년 12월 및 연간 온라인쇼핑동향 [December 2023 and annual online shopping trends]. https://kostat.go.kr/board.es?mid=a10301120300&bid=241&act=view&list_no=429296
  35. Lasserre, J., Sheikh, A.-S., Koriagin, E., Bergman, U., Vollgraf, R., & Shirvany, R. (2020, May 5-8). Meta-learning for size and fit recommendation in fashion [Conference session]. The 2020 SIAM International Conference on Data Mining, Cincinnati, Ohio, United States. https://doi.org/10.1137/1.9781611976236.7
  36. Lee, A. L., & Kim, H. E. (2020). The sizing communications in online apparel retail websites: Focusing on ready-to-wear women's tailored jacket. Fashion and Textile Research Journal, 22(5), 617-627. https://doi.org/10.5805/sfti.2020.22.5.617
  37. Lee, A. L., & Kim, H. E. (2022). The sizing communications in online apparel retail websites: Focusing on ready-to-wear women's pants. Fashion and Textile Research Journal, 24 (1), 117-126. https://doi.org/10.5805/sfti.2022.24.1.117
  38. Lee, D. (2023). Personalized size recommender system for online apparel shopping: A collaborative filtering approach. Journal of the Korea Society of Computer and Information, 28(8), 39-48. https://doi.org/10.9708/jksci.2023.28.08.039
  39. Lee, D., Kang, T., & Park, D.-H. (2014). The research on pcbased versus mobile device-based shopping behavior depending on consumer purchase decision process: Focusing on task-technology fit theory. Entrue Journal of Information Technology, 13(3), 107-122.
  40. Lee, J. (2021). A Study on the influencing factors of fashion beauty magazine curation service usage intention: Focused on the extended technology acceptance model. Journal of Digital Convergence, 19(4), 373-381. http://dx.doi.org/10.14400/JDC.2021.19.4.373
  41. Lee, S. (2022, November 2). 브래키팅(Bracketing)을 줄이기 위한 미국 온라인 쇼핑몰의 변화 [U. S. Online Shopping Mall Changes to Reduce Bracketing]. KOTRA. https://dream.kotra.or.kr/kotranews/cms/news/actionKotraBoardDetail.do?SITE_NO=3&MENU_ID=180&CONTENTS_NO=1&bbsGbn=243&bbsSn=243&pNttSn=197907
  42. Lee, S. H., Lee, U. O., & Yu, J. P. (2011). Antecedents of purchase intention toward fashion T-commerce: Application of technology acceptance model. Journal of Consumer Studies, 22(1), 93-115.
  43. Ministry of Science and ICT. (2023). 2022 인터넷이용 실태조사 [2022 Survey on the internet usage]. https://www.msit.go.kr/bbs/view.do?sCode=user&bbsSeqNo=79&nttSeqNo=3173583
  44. Nam, M. (2014). A study on the effects that personal characteristics of market maven and time orientation have on mobile shopping: With a focus on mobile shopping. Journal of the Korean Society of Costume, 64(5), 30-49. https://doi.org/10.7233/jksc.2014.64.5.030
  45. Nestler, A., Karessli, N., Hajjar, K., Weffer, R., & Shirvany, R. (2021, August 14-18). SizeFlags: Reducing size and fit related returns in fashion e-commerce [Conference session]. The 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore. https://doi.org/10.1145/3447548.3467160
  46. Park, B.-J., & Choi, S.-H. (2018). User evaluation, usage intention and purchase intention according to recommendation services in online fashion shopping mall. Journal of Korea Design Forum, 61, 139-149. https://doi.org/10.21326/ksdt.2018.23.4.012
  47. Park, M.-J., Park, H.-H., & Ku, Y.-S. (2023). Study on user experience of personalized recommendation systems of fashion vertical platforms: The regulation effect of self-regulatory focus. Journal of the Korean Society of Clothing and Textiles, 47(4), 711-728. https://doi.org/10.5850/JKSCT.2023.47.4.711
  48. Park, O. M., & Lee, W. Y. (2020). A case study of artificial intelligence(AI) reflected in the fashion industry: Focused on fashion consumers. Journal of the Korean Society of Design Culture, 26(4), 189-205. https://doi.org/10.18208/ksdc.2020.26.4.189
  49. Pookulangara, S., Kinley, J. P., & Josiam, B. M. (2021). Online sizing: Examining True Fit® technology using adapted TAM model. International Journal of Fashion Design, Technology and Education, 14(3), 348-357. https://doi.org/10.1080/17543266.2021.1950847
  50. Realpacking. (2023, August 14). 패션업계가 선택한 의류 반품 손해비용을 줄이는 3가지 시스템 [3 systems to reduce cost of returning clothing selected by fashion industry]. https://www.realpacking.com/ko/blog/3-systems-to-reduce-clothing-return-damage-costs
  51. Reid, S. M. (2022). Perceived fit satisfaction of True Fit® size recommendation software: Implications for plus-size women (Publication No. 28644341) [Doctoral dissertation, Iowa State University]. ProQuest Dissertations Publishing.
  52. Seo, S. (2023). Effect of consumers' privacy concerns on information disclosure intentions for size recommendation services based on body information: Focusing on privacy calculus theory. Journal of the Korean Society of Clothing and Textiles, 47(3), 442-458. https://doi.org/10.5850/JKSCT.2023.47.3.442
  53. Sheikh, A.-S., Guigoures, R., Koriagin, E., Ho, Y. K., Shirvany, R., Vollgraf, R., & Bergmann, U. (2019, September 16-20). A deep learning system for predicting size and fit in fashion e-commerce [Conference session]. The 13th ACM Conference on Recommender Systems, Copenhagen, Denmark. https://doi.org/10.1145/3298689.3347006
  54. Techcrunch. (n.d.). Techcrunch. https://techcrunch.com/2015/07/12/rakuten-buys-virtual-fitting-room-startup-fits-me-in-a-fashion-commerce-play/
  55. Truefit. (n.d.). Truefit. https://www.truefit.com/how-it-works
  56. Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
  57. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  58. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328-376. https://doi.org/10.17705/1jais.00428
  59. Virtusize Korea. (n.d.). Virtusize Korea. https://www.virtusize.kr/virtusize
  60. Wang, Y. S., & Wang, H. Y. (2008). Developing and validating an instrument for measuring mobile computing self-efficacy. Cyber Psychology & Behavior, 11(4), 405-413. https://doi.org/10.1089/cpb.2007.0061
  61. Wang, Y.-Y., Townsend, A., Luse, A., & Mennecke, B. (2012, August 9-11). The determinants of acceptance of recommender systems: Applying the UTAUT model [Conference session]. The 2012 AMCIS Conference, Seattle, United States. https://aisel.aisnet.org/amcis2012/proceedings/EBusiness/2
  62. Won, Y., Jung, H. J., & Lee, Y. (2022). A study on information types and value perception of fashion rental service platforms. Journal of Consumer Studies, 33(2), 113-131. https://doi.org/10.35736/JCS.33.2.5
  63. Yoo, H.-S. (2017). Mediation of consumer satisfaction in the relationship between outdoor wear purchase decision-making process and repurchase intention. Fashion and Textile Research Journal, 19(1), 19-29. https://doi.org/10.5805/sfti.2017.19.1.19
  64. Yoo, Y., & Yeo, J. (2023). Enhancing transparency in product search and recommendation services of online platforms. Consumer Policy and Education Review, 19(2), 61-88. https://doi.org/10.15790/cope.2023.19.2.061
  65. Yoon, N., Lee, H. K., & Jang, S. (2019). The effect of consumers' choice overload and avoidance of similarity on innovativeness and use compatibility in online recommendation service. Fashion and Textile Research Journal, 21(2), 141-150. https://doi.org/10.5805/SFTI.2019.21.2.141
  66. Yoon, N., Lee, H. K., & Lee, Y.-J. (2021). The effect of VR store vividness on immersion and user satisfaction. Journal of the Korean Society of Clothing and Textiles, 45(3), 559-572. https://doi.org/10.5850/JKSCT.2021.45.3.559
  67. Zozofit. (n.d.). Zozofit. https://zozofit.com/products/suit