References
- N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou, and D. N. Bikiaris, Chitosan derivatives as biosorbents for basic dyes, Langmuir, 23, 7634-7643 (2007). https://doi.org/10.1021/la700423j
- G. S. Kumar, S. S. Kar, and A. Jain, Health and environmental sanitation in India: Issues for prioritizing control strategies, Indian. J. Occup. Environ. Med., 15, 93-96 (2011). https://doi.org/10.4103/0019-5278.93196
- T. A. Davis, B. Volesky, and R. H. S. F. Vieira, Sargassum seaweed as biosorbent for heavy metals, Water Res., 34, 4270-4278 (2000). https://doi.org/10.1016/S0043-1354(00)00177-9
- S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33, 2469-2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
- U. Farooq, J. A. Kozinski, M. A. Khan, and M. Athar, Biosorption of heavy metal ions using wheat based biosorbents-A review of the recent literature, Bioresour. Technol., 101, 5043-5053 (2010). https://doi.org/10.1016/j.biortech.2010.02.030
- F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
- D. Norton-Brandao, S. M. Scherrenberg, and J. B. V. Lier, Reclamation of used urban waters for irrigation purposes-A review of treatment technologies, J. Environ. Manage., 122, 85-98 (2013). https://doi.org/10.1016/j.jenvman.2013.03.012
- D. Lakherwal, Adsorption of heavy metals: A review, I. J. Environ. Res. Dev., 4, 41-48 (2014).
- A. E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotox. Environ. Safe., 148, 702-712 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.034
- M. A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4, 361-377 (2011). https://doi.org/10.1016/j.arabjc.2010.07.019
- A. Demirbas, Heavy metal adsorption onto agro-based waste materials: A review, J. Hazard. Mater., 157, 220-229 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.024
- D. Sud, G. Mahajan, and M. P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review, Bioresour. Technol., 99, 6017-6027 (2008). https://doi.org/10.1016/j.biortech.2007.11.064
- D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358-3393 (2005). https://doi.org/10.1002/anie.200460587
- N. Tapia-Orozco, R. Ibarra-Cabrera, A. Tecante, M. Gimeno, R. Parra, and R. Garcia-Arrazola, Removal strategies for endocrine disrupting chemicals using cellulose-based materials as adsorbents: A review, J. Environ. Chem. Eng., 4, 3122-3142 (2016). https://doi.org/10.1016/j.jece.2016.06.025
- S. Choi and Y. Jeong, The removal of heavy metals in aqueous solution by hydroxyapatite/cellulose composite, Fibers Polym., 9, 267-270 (2008). https://doi.org/10.1007/s12221-008-0042-0
- Y. -D. Dong, H. Zhang, G. -J. Zhong, G. Yao, and B. Lai, Cellulose/carbon composites and their applications in water treatment - A review, Chem. Eng. J., 405, 126980 (2021).
- M. D. Halluin, J. Rull-Barrull, G. Bretel, C. Labrugere, E. L. Grognec, and F.- X. Felpin, Chemically modified cellulose filter paper for heavy metal remediation in water, ACS Sustain. Chem. Eng., 5, 1965-1973 (2017). https://doi.org/10.1021/acssuschemeng.6b02768
- V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures, Chem. Rev., 115, 4744-4822 (2015). https://doi.org/10.1021/cr500304f
- M. Fuhrmann and J. P. Fitts, Adsorption of trace metals on glass fiber filters, J. Environ. Qual., 3, 1943-1944 (2004). https://doi.org/10.2134/jeq2004.1943
- C. Kahl, M. Feldmann, P. Salzer, and H. P. Heim, Advanced short fiber composites with hybrid reinforcement and selective fiber-matrix-adhesion based on polypropylene - Characterization of mechanical properties and fiber orientation using high-resolution X-ray tomography, Compos. Part A Appl. Sci. Manuf., 111, 54-61 (2018). https://doi.org/10.1016/j.compositesa.2018.05.014
- A. D. Pronovost and M. E. Hickey, Methods and compositions for heavy metal removal and for oral delivery of desirable agents, US Patent 8,883,216 (2014).
- L. Zhang, T. Tsuzuki, and X. Wang, Preparation and characterization on cellulose nanofiber film, Materials Science Forum, 654-656, 1760-1763 (2010). https://doi.org/10.4028/www.scientific.net/MSF.654-656.1760
- W. Li, K. Chu, and L. Liu, Multipurpose zwitterionic polymer- coated glass fiber filter for effective separation of oil-water mixtures and emulsions and removal of heavy metals, ACS Appl. Polym. Mater., 3, 1276-1284 (2021). https://doi.org/10.1021/acsapm.0c00928
- B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, and O. Krim, Kinetic Thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study, World J. Environ. Eng., 3, 95-110 (2015).
- A. J. Bonon, M. Weck, E. A. Bonfante, and P. G. Coelhod, Physicochemical characterization of three fiber-reinforced epoxide- based composites for dental applications, Mater. Sci. Eng. C, 69, 905-913 (2016). https://doi.org/10.1016/j.msec.2016.07.002
- M. M. Rahman, A. Z. Shafiullah, A. Pal, M. A. Islam, I. Jahan, and B. B. Saha, Study on optimum IUPAC adsorption isotherm models employing sensitivity of parameters for rigorous adsorption system performance evaluation, Energies, 14, 7478 (2021).
- P. Lu and Y. -L. Hsieh, Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning, ACS Appl. Mater. Interfaces, https://doi.org/10.1021/am1004128.
- A. Bismarck, I. Aranberri-Askargorta, J. Springer, T. Lampke, B. Wielage, A. Stamboulis, I. Shenderovich, and H. -H. Limbach, Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior, Polym. Compos., 23, 872-894 (2002). https://doi.org/10.1002/pc.10485
- F. A. Stevie and C. L. Donley, Introduction to x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A, 38, 63204 (2020).
- X. Pei, L. Gan, Z. Tong, H. Gao, S. Meng, W. Zhang, P. Wang, Y. Chen, Robust cellulose-based composite adsorption membrane for heavy metal removal, J. Hazard. Mater., 406, 124746 (2021).
- B. Li, Y. Pan, Q. Zhang, Z. Huang, J. Liu, and H. Xiao, Porous cellulose beads reconstituted from ionic liquid for adsorption of heavy metal ions from aqueous solutions, Cellulose, 26, 9163-9178 (2019). https://doi.org/10.1007/s10570-019-02687-4
- Z. Hanif, S. Lee, G. H. Qasim, I. Ardiningsih, J. Kim, J. Seon, S. Han, S. Hong, and M. -H. Yoon, Polypyrrole multilayer- laminated cellulose for large-scale repeatable mercury ion removal, J. Mater. Chem. A, 4, 12425-12433 (2016). https://doi.org/10.1039/C6TA01219A
- M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini, Surface characterization of cellulose fibers by XPS and inverse gas chromatography, Cellulose, 2, 145-157 (1995). https://doi.org/10.1007/BF00813015
- A. Salama, R. Abouzeid, W. S. Leong, J. Jeevanandam, P. Samyn, A. Dufresne, M. Bechelany, and A. Barhoum, Nanocellulose-based materials for water treatment: Adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration, Nanomaterials, 11, 3008 (2021).
- A. Aarva, V. L. Deringer, S. Sainio, T. Laurila, and M. A. Caro, Understanding X‑ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part II: Quantitative fitting of spectra, Chem. Mater., 31, 9256-9267 (2019). https://doi.org/10.1021/acs.chemmater.9b02050
- N. Li, W. Dai, H. Kang, B. Lv, P. Jiang, and W. Wang, Study on the adsorption performance and adsorption mechanism of graphene oxide by red sandstone in aqueous solution, Adsorp. Sci. Technol., https://doi.org/10.1155/2022/2557107.
- P. Sahu and M. Gupta, Water absorption behavior of cellulosic fibers polymer composites: A review on its effects and remedies, J. Ind. Text., https://doi.org/10.1177/1528083720974424.
- P. B. S. Rallapalli, S. S. Choi, H. Moradi, J. -K. Yang, J. -H. Lee, and J. H. Ha, Tris(2-benzimidazolyl)amine (NTB)-modified metal- organic framework: Preparation, characterization, and mercury ion removal studies, Water, 15, 2559 (2023).
- S. M. Ragheb, Phosphate removal from aqueous solution using slag and fly ash, HBRC J., 9, 270-275 (2013). https://doi.org/10.1016/j.hbrcj.2013.08.005
- S. Kawasaki, H. Nakada, Y. Tajima, H. Yoshinobu, E. Maeda, and K. Otsuka, Composition adsorbent and method for producing thereof, and water purification material and water purifier, US Patent US20060163151A1 (2006).
- A. Maglio, F. L. Himpsl, and R. V. Russo, Composite ion-exchange material preparation and use thereof, US Patent US5277931A (1994).
- G. W. Dodwell and B. Smith, Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates, US Patent 5,053,139 (1991).
- J. Das, B. S. Patra, N. Baliarsingh, and K. M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions, Appl. Clay Sci., 32, 252-260 (2006). https://doi.org/10.1016/j.clay.2006.02.005