DOI QR코드

DOI QR Code

Adsorptive Removal of Cu(II), Pb(II), and Hg(II) Ions from Common Surface Water Using Cellulose Fiber-Based Filter Media

  • Received : 2024.06.25
  • Accepted : 2024.07.11
  • Published : 2024.08.10

Abstract

Environmental pollution from heavy metal ions (HMIs) is a global concern. Recently, biosorption methods using cellulose sorbents have gained popularity. The objective of this study was to assess the removal efficiency of Cu(II), Pb(II), and Hg(II) ions at low concentration levels (100-700 ppb) from aqueous solutions using three different cellulose fiber-based filter media. Sample A was pure cellulose fiber, Sample B was 10% activated carbon-cellulose fiber, and Sample C was cellulose fiber-glass fiber-30% activated carbon-20% amorphous titanium silicate (ATS). The samples were characterized by several physicochemical techniques. The porosity measurements using N2 sorption isotherms revealed that Samples A and B are nonporous or macroporous materials, whereas the addition of 50% filler materials into the cellulose resulted in a microporous material. The Brunauer-Emmett-Teller (BET) surface area and pore volume of Sample C were found to be 320.34 m2/g and 0.162 cm3/g, respectively. The single ion batch adsorption experiments reveal that at 700 ppb initial metal ion concentration, Sample A had removal efficiencies of 7.5, 11.5, and 13.7% for Cu(II), Pb(II), and Hg(II) ions, respectively. Sample B effectively eliminated 99.6% of Cu(II) ions compared to Pb(II) (14.2%) and Hg(II) (31.9%) ions. Cu(II) (99.37%) and Pb(II) (96.3%) ions are more efficiently removed by Sample C than Hg(II) (68.2%) ions. The X-ray photoelectron spectroscopy (XPS) wild survey spectrum revealed the presence of Cu(II), Pb(II), and Hg(II) ions in HMI-adsorbed filter media. The high-resolution C1s spectra of Samples A and B reveal the presence of -C-OH and -COOH groups on their surface, which are essential for HMIs adsorption via complexation reactions. Additionally, the ATS in Sample C facilitates the adsorption of Pb(II) and Hg(II) ions through ion exchange.

Keywords

References

  1. N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou, and D. N. Bikiaris, Chitosan derivatives as biosorbents for basic dyes, Langmuir, 23, 7634-7643 (2007). https://doi.org/10.1021/la700423j
  2. G. S. Kumar, S. S. Kar, and A. Jain, Health and environmental sanitation in India: Issues for prioritizing control strategies, Indian. J. Occup. Environ. Med., 15, 93-96 (2011). https://doi.org/10.4103/0019-5278.93196
  3. T. A. Davis, B. Volesky, and R. H. S. F. Vieira, Sargassum seaweed as biosorbent for heavy metals, Water Res., 34, 4270-4278 (2000). https://doi.org/10.1016/S0043-1354(00)00177-9
  4. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33, 2469-2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
  5. U. Farooq, J. A. Kozinski, M. A. Khan, and M. Athar, Biosorption of heavy metal ions using wheat based biosorbents-A review of the recent literature, Bioresour. Technol., 101, 5043-5053 (2010). https://doi.org/10.1016/j.biortech.2010.02.030
  6. F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  7. D. Norton-Brandao, S. M. Scherrenberg, and J. B. V. Lier, Reclamation of used urban waters for irrigation purposes-A review of treatment technologies, J. Environ. Manage., 122, 85-98 (2013). https://doi.org/10.1016/j.jenvman.2013.03.012
  8. D. Lakherwal, Adsorption of heavy metals: A review, I. J. Environ. Res. Dev., 4, 41-48 (2014).
  9. A. E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotox. Environ. Safe., 148, 702-712 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.034
  10. M. A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4, 361-377 (2011). https://doi.org/10.1016/j.arabjc.2010.07.019
  11. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: A review, J. Hazard. Mater., 157, 220-229 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.024
  12. D. Sud, G. Mahajan, and M. P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review, Bioresour. Technol., 99, 6017-6027 (2008). https://doi.org/10.1016/j.biortech.2007.11.064
  13. D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358-3393 (2005). https://doi.org/10.1002/anie.200460587
  14. N. Tapia-Orozco, R. Ibarra-Cabrera, A. Tecante, M. Gimeno, R. Parra, and R. Garcia-Arrazola, Removal strategies for endocrine disrupting chemicals using cellulose-based materials as adsorbents: A review, J. Environ. Chem. Eng., 4, 3122-3142 (2016). https://doi.org/10.1016/j.jece.2016.06.025
  15. S. Choi and Y. Jeong, The removal of heavy metals in aqueous solution by hydroxyapatite/cellulose composite, Fibers Polym., 9, 267-270 (2008). https://doi.org/10.1007/s12221-008-0042-0
  16. Y. -D. Dong, H. Zhang, G. -J. Zhong, G. Yao, and B. Lai, Cellulose/carbon composites and their applications in water treatment - A review, Chem. Eng. J., 405, 126980 (2021).
  17. M. D. Halluin, J. Rull-Barrull, G. Bretel, C. Labrugere, E. L. Grognec, and F.- X. Felpin, Chemically modified cellulose filter paper for heavy metal remediation in water, ACS Sustain. Chem. Eng., 5, 1965-1973 (2017). https://doi.org/10.1021/acssuschemeng.6b02768
  18. V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures, Chem. Rev., 115, 4744-4822 (2015). https://doi.org/10.1021/cr500304f
  19. M. Fuhrmann and J. P. Fitts, Adsorption of trace metals on glass fiber filters, J. Environ. Qual., 3, 1943-1944 (2004). https://doi.org/10.2134/jeq2004.1943
  20. C. Kahl, M. Feldmann, P. Salzer, and H. P. Heim, Advanced short fiber composites with hybrid reinforcement and selective fiber-matrix-adhesion based on polypropylene - Characterization of mechanical properties and fiber orientation using high-resolution X-ray tomography, Compos. Part A Appl. Sci. Manuf., 111, 54-61 (2018). https://doi.org/10.1016/j.compositesa.2018.05.014
  21. A. D. Pronovost and M. E. Hickey, Methods and compositions for heavy metal removal and for oral delivery of desirable agents, US Patent 8,883,216 (2014).
  22. L. Zhang, T. Tsuzuki, and X. Wang, Preparation and characterization on cellulose nanofiber film, Materials Science Forum, 654-656, 1760-1763 (2010). https://doi.org/10.4028/www.scientific.net/MSF.654-656.1760
  23. W. Li, K. Chu, and L. Liu, Multipurpose zwitterionic polymer- coated glass fiber filter for effective separation of oil-water mixtures and emulsions and removal of heavy metals, ACS Appl. Polym. Mater., 3, 1276-1284 (2021). https://doi.org/10.1021/acsapm.0c00928
  24. B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, and O. Krim, Kinetic Thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study, World J. Environ. Eng., 3, 95-110 (2015).
  25. A. J. Bonon, M. Weck, E. A. Bonfante, and P. G. Coelhod, Physicochemical characterization of three fiber-reinforced epoxide- based composites for dental applications, Mater. Sci. Eng. C, 69, 905-913 (2016). https://doi.org/10.1016/j.msec.2016.07.002
  26. M. M. Rahman, A. Z. Shafiullah, A. Pal, M. A. Islam, I. Jahan, and B. B. Saha, Study on optimum IUPAC adsorption isotherm models employing sensitivity of parameters for rigorous adsorption system performance evaluation, Energies, 14, 7478 (2021).
  27. P. Lu and Y. -L. Hsieh, Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning, ACS Appl. Mater. Interfaces, https://doi.org/10.1021/am1004128.
  28. A. Bismarck, I. Aranberri-Askargorta, J. Springer, T. Lampke, B. Wielage, A. Stamboulis, I. Shenderovich, and H. -H. Limbach, Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior, Polym. Compos., 23, 872-894 (2002). https://doi.org/10.1002/pc.10485
  29. F. A. Stevie and C. L. Donley, Introduction to x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A, 38, 63204 (2020).
  30. X. Pei, L. Gan, Z. Tong, H. Gao, S. Meng, W. Zhang, P. Wang, Y. Chen, Robust cellulose-based composite adsorption membrane for heavy metal removal, J. Hazard. Mater., 406, 124746 (2021).
  31. B. Li, Y. Pan, Q. Zhang, Z. Huang, J. Liu, and H. Xiao, Porous cellulose beads reconstituted from ionic liquid for adsorption of heavy metal ions from aqueous solutions, Cellulose, 26, 9163-9178 (2019). https://doi.org/10.1007/s10570-019-02687-4
  32. Z. Hanif, S. Lee, G. H. Qasim, I. Ardiningsih, J. Kim, J. Seon, S. Han, S. Hong, and M. -H. Yoon, Polypyrrole multilayer- laminated cellulose for large-scale repeatable mercury ion removal, J. Mater. Chem. A, 4, 12425-12433 (2016). https://doi.org/10.1039/C6TA01219A
  33. M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini, Surface characterization of cellulose fibers by XPS and inverse gas chromatography, Cellulose, 2, 145-157 (1995). https://doi.org/10.1007/BF00813015
  34. A. Salama, R. Abouzeid, W. S. Leong, J. Jeevanandam, P. Samyn, A. Dufresne, M. Bechelany, and A. Barhoum, Nanocellulose-based materials for water treatment: Adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration, Nanomaterials, 11, 3008 (2021).
  35. A. Aarva, V. L. Deringer, S. Sainio, T. Laurila, and M. A. Caro, Understanding X‑ray spectroscopy of carbonaceous materials by combining experiments, density functional theory, and machine learning. Part II: Quantitative fitting of spectra, Chem. Mater., 31, 9256-9267 (2019). https://doi.org/10.1021/acs.chemmater.9b02050
  36. N. Li, W. Dai, H. Kang, B. Lv, P. Jiang, and W. Wang, Study on the adsorption performance and adsorption mechanism of graphene oxide by red sandstone in aqueous solution, Adsorp. Sci. Technol., https://doi.org/10.1155/2022/2557107.
  37. P. Sahu and M. Gupta, Water absorption behavior of cellulosic fibers polymer composites: A review on its effects and remedies, J. Ind. Text., https://doi.org/10.1177/1528083720974424.
  38. P. B. S. Rallapalli, S. S. Choi, H. Moradi, J. -K. Yang, J. -H. Lee, and J. H. Ha, Tris(2-benzimidazolyl)amine (NTB)-modified metal- organic framework: Preparation, characterization, and mercury ion removal studies, Water, 15, 2559 (2023).
  39. S. M. Ragheb, Phosphate removal from aqueous solution using slag and fly ash, HBRC J., 9, 270-275 (2013). https://doi.org/10.1016/j.hbrcj.2013.08.005
  40. S. Kawasaki, H. Nakada, Y. Tajima, H. Yoshinobu, E. Maeda, and K. Otsuka, Composition adsorbent and method for producing thereof, and water purification material and water purifier, US Patent US20060163151A1 (2006).
  41. A. Maglio, F. L. Himpsl, and R. V. Russo, Composite ion-exchange material preparation and use thereof, US Patent US5277931A (1994).
  42. G. W. Dodwell and B. Smith, Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates, US Patent 5,053,139 (1991).
  43. J. Das, B. S. Patra, N. Baliarsingh, and K. M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions, Appl. Clay Sci., 32, 252-260 (2006). https://doi.org/10.1016/j.clay.2006.02.005