Acknowledgement
이 논문은 전남대학교 학술연구비(과제번호: 2022-2906) 지원 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1A2C1011317).
References
- Y. Kim, H. Park, J. H. Warner, and A. Manthiram, Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries, ACS Energy Lett., 6, 941-948 (2021). https://doi.org/10.1021/acsenergylett.1c00086
- L. Britala, M. Marinaro, and G. Kucinskis, A review of the degradation mechanisms of NCM cathodes and corresponding mitigation strategies, J. Energy Storage, 73, 108875 (2023).
- H. Yu and D. Pei, A review of the origin, adverse influence and modification method of residual surface lithium in Ni-rich cathodes, Int. J. Electrochem. Sci., 19, 100391 (2023).
- W. M. Seong, Y. Kim, and A. Manthiram, Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries, Chem. Mater., 32, 9479-9489 (2020). https://doi.org/10.1021/acs.chemmater.0c02808
- A. Chen, K. Wang, J. Li, Q. Mao, Z. Xiao, D. Zhu, G. Wang, P. Liao, J. He, Y. You, and Y. Xia, The formation, detriment and solution of residual lithium compounds on Ni-rich layered oxides in lithium-ion batteries, Front. Energy Res., 8, 593009 (2020).
- D. H. Cho, C. H. Jo, W. Cho, Y. J. Kim, H. Yashiro, Y. K. Sun, and S. T. Myung, Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2, J. Electrochem. Soc., 161, A920-A926 (2014). https://doi.org/10.1149/2.042406jes
- D. Y. Hwang, S. J. Sim, B. S. Jin, H. S. Kim, and S. H. Lee, Suppressed microcracking and F penetration of Ni-rich layered cathode via the combined effects of titanium dioxide doping and coating, ACS Appl. Energy Mater., 4, 1743-1751 (2021). https://doi.org/10.1021/acsaem.0c02897
- W. Wang, L. Wu, Z. Li, K. Huang, J. Jiang, Z. Chen, X. Qi, H. Dou, and X. Zhang, In situ tuning residual lithium compounds and constructing TiO2 coating for surface modification of a nickel-rich cathode toward high-energy lithium-ion batteries, ACS Appl. Energy Mater., 3, 12423-12432 (2020). https://doi.org/10.1021/acsaem.0c02406
- V. C. Ho, S. Jeong, T, Yim, and J. Mun, Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries, J. Power Sources, 450, 227625 (2020).
- J. Li, J. Xiang, G. Yi, Y. Tang, H. Shao, X. Liu, B. Shan, and R. Chen, Reduction of surface residual lithium compounds for single-crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 atomic layer deposition and post-annealing, Coatings, 12, 84 (2022).
- F. Wu, Q. Shi, L. Chen, J. Dong, J. Zhao, H. Wang, F. Gao, J. Liu, H. Zhang, N. Li, Y. Lu, and Y. Su, New insights into dry-coating-processed surface engineering enabling structurally and thermally stable high-performance Ni-rich cathode materials for lithium ion batteries, Chem. Eng. J., 470, 144045 (2023).
- Y. Li, D. Zhang, Y. Yan, Y. Wang, Z. Li, X. Tan, and M. Zhang, Enhanced electrochemical properties of SiO2-Li2SiO3-coated NCM811 cathodes by reducing surface residual lithium, J. Alloys Compd., 923, 166317 (2022).
- Z. Li, G. Hu, Z. Luo, M. Huang, S. Zhang, K. Du, Z. Peng, X. Tan, W. Zhao, Q. Yan, and Y. cao, Ta doping and LiTaO3 coating to improve the electrochemical performance of LiNi0.925Co0.03Mn0.045O2 cathode material for lithium ion batteries, Solid State Ion., 394, 116190 (2023).
- Y. Mo, L. Guo, H. Jin, B. Du, B. Cao, Y. Chen, D. Li, and Y. Chen, Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries, J. Power Sources, 448, 227439 (2020).
- Y. Su, L. Li, G. Chen, L. Chen, N. Li, Y. Lu, L. Bao, S. Chen, and F. Wu, Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials, Chin. J. Chem., 39, 189-198 (2020).
- A. Martens, C. Bolli, A. Hoffmann, C. Erk, T. Ludwig, M. E. Kazzi, U. Breddmann, P. Novak, and I. Krossing, Coating of NCM 851005 cathode material with AlO@Al2O3 and subsequent treatment with anhydrous HF, J. Electrochem. Soc., 167, 070510 (2020).
- R. S. Negi, E. Celik, R. Pan, R. Staglich, J. Senker, and M. T. Elm, Insights into the positive effect of post-annealing on the electrochemical performance of Al2O3-coated Ni-rich NCM cathodes for lithium-ion batteries, ACS Appl. Energy Mater., 4, 3369-3380 (2021). https://doi.org/10.1021/acsaem.0c03135
- D. Hu, F. Du, H. Cao, Q. Zhou, P. Sun, T. Xu, C. Mei, Q. Hao, Z. Fan, and J. Zheng, An effective strategy to control thickness of Al2O3 coating layer on nickel-rich cathode materials, J. Electroanal. Chem., 880, 114910 (2021).
- W. Shan, H. Zhang, C. Hu, Y. Zhou, K. H. Lam, S. Wang, and X. Hou, The cycle performance of high nickel cathode materials significantly enhanced by the LiAlO2@Al2O3 dual-modified coating, Electrochim. Acta, 367, 137216 (2021).
- J. Wang, D. Zhao, G. Zhou, S. Wei, S. Hou, Y. Li, H. Ma, Y. Yuan, X. Yan, and X. Hou, Effects of Al2O3 and LiAlO2 Co-coating on electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode materials, Ceram. Int., 49, 15842-15850 (2023). https://doi.org/10.1016/j.ceramint.2023.01.179
- R. S. Negi, S. P. Culver, A. Mazilkin, T. Brezesinski, and M. T. Elm, Enhancing the electrochemical performance of LiNi(0.70)Co(0.15) Mn(0.15)O(2) cathodes using a practical solution-based Al(2)O(3) Coating, ACS Appl. Mater. Interfaces, 12, 31392-31400 (2020). https://doi.org/10.1021/acsami.0c06484
- V. Riesgo-Gonzalez, D. S. Hall, K. Marker, J. Slaughter, D. S. Wright, and C. P. Grey, Effect of annealing on the structure, composition, and electrochemistry of NMC811 coated with Al2O3 using an alkoxide precursor, Chem. Mater., 34, 9722-9735 (2022). https://doi.org/10.1021/acs.chemmater.2c02580
- W. Zhu, X. Huang, T. Liu, Z. Xie, Y. Wang, K. Tian, L. Bu, H. Wang, L. Gao, and J. Zhao, Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges, Coatings, 9, 92 (2019).
- S. Neudeck, A. Mazilkin, C. Reitz, P. Hartmann, J. Janek, and T. Brezesinski, Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries, Sci. Rep., 9, 5328 (2019).
- J. H. Kim, J. S. Park, S. H. Cho, J. M. Park, J. S. Nam, S. G. Yoon, I. D. Kim, J. W. Jung, and H. S. Kim, Stabilizing the surface of Ni-rich cathodes via facing-target sputtering for high-performance lithium-ion batteries, J. Mater. Chem. A, 10, 25009-25018 (2022). https://doi.org/10.1039/D2TA07322F
- M. J. Herzog, D. Esken, and J. Janek, Improved cycling performance of high-nickel NMC by dry powder coating with nanostructured fumed Al2O3, TiO2, and ZrO2: A comparison, Batter. Supercaps, 4, 1003-1017 (2021). https://doi.org/10.1002/batt.202100016
- M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, and J. Janek, Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries, Energy Technol., 9, 2100028 (2021).
- Y. Wu, M. Li, W. Wahyudi, G. Sheng, X. Miao, T. D. Anthopoulos, K. W. Huang, Y. Li, and Z. Lai, Performance and stability improvement of layered NCM lithium-ion batteries at high voltage by a microporous Al2O3 sol-gel coating, ACS Omega, 4, 13972-13980 (2019). https://doi.org/10.1021/acsomega.9b01706
- Y. Moryson, F. Walther, J. Sann, B. Mogwitz, S. Ahmed, S. Burkhardt, L. Chen, P. J. Klar, K. Volz, S. Fearn, M. Rohnke, and J. Janek, Analyzing nanometer-thin cathode particle coatings for lithium-ion batteries-the example of TiO2 on NCM622, ACS Appl. Energy Mater., 4, 7168-7181 (2021).
- L. An, W. Li, J. Wang, S. Liu, K. Jiao, L. Fan, J. Liang, Z. Liu, and Q. Du, Fabrication of high electrochemical performance ternary lithium battery using LiNi0.8Co0.1Mn0.1O2 with nano-TiO2 coating, Appl. Energy, 355, 122272 (2024).
- Q. Fan, K. Lin, S. Yang, S. Guan, J. Chen, S. Feng, J. Liu, L. Liu, J. Li, and Z. Shi, Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control, J. Power Sources, 477, 228745 (2020).
- H. Kim, J. Jang, D. Byun, H. S. Kim, and W. Choi, Selective TiO(2) nanolayer coating by polydopamine modification for highly stable ni-rich layered oxides, ChemSusChem, 12, 5253-5264 (2019). https://doi.org/10.1002/cssc.201902998
- W. Wang, C. Lee, D. Yu, Y. Kondo, Y. Miyahara, T. Abe, and K. Miyazaki, Effects of a solid solution outer layer of TiO2 on the surface and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathodes for lithium-ion batteries through the use of thin-film electrodes, ACS Appl. Energy Mater., 5, 5117-5126 (2022). https://doi.org/10.1021/acsaem.2c00461
- L. You, Y. Wen, G. Li, B. Chu, J. Wu, T. Huang, and A. yu, Nano-TiO2 coated single-crystal LiNi0.65Co0.15Mn0.2O2 for lithium-ion batteries with a stable structure and excellent cycling performance at a high cut-off voltage, J. Mater. Chem. A, 10, 5631-5641 (2022). https://doi.org/10.1039/D2TA00135G
- H. Pourfarzed, M. Karimi, M. Saremi, and R. Badrnezhad, Highly enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 by surface coating with Li-Ti-O nanoparticles for lithium-ion batteries, Anal. Bioanal. Electrochem., 14.7, 696-714 (2022).
- H. Chen, L. Xiao, P. Liu, H. Chen, Z. Xia, L. Ye, and Y. Hu, Rock salt-type LiTiO2@LiNi0.5Co0.2Mn0.3O2 as cathode materials with high capacity retention rate and stable structure, Ind. Eng. Chem. Res., 58, 18498-18507 (2019). https://doi.org/10.1021/acs.iecr.9b03276
- C. T. Hsieh, C. H. Chao, W. J. Ke, Y. F. Lin, H. W. Liu, Y. A. Gandomi, S. Gu, C. Y. Su, J. K. Chang, J. Li, C. C. Fu, B. C. Mallick, and R. S. Juang, Roll-to-roll atomic layer deposition of titania nanocoating on thermally stabilizing lithium nickel cobalt manganese oxide cathodes for lithium ion batteries, ACS Appl. Energy Mater., 3, 10619-10631 (2020). https://doi.org/10.1021/acsaem.0c01541
- S. K. Mylavarapu, F. U. Okudur, S. Yari, D. D. Sloovere, J. D'Haen, A. Shafique, M. K. V. Bael, M. Safari, and A. Hardy, Effect of TiOx surface modification on the electrochemical performances of Ni-rich (NMC-622) cathode material for lithium-ion batteries, ACS Appl. Energy Mater., 4, 10493-10504 (2021). https://doi.org/10.1021/acsaem.1c01309
- X. He, X. Xu, L. Wang, C. Du, X. Cheng, P. Zuo, Y. Ma, and G. Yin, Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material via Li2TiO3 nanoparticles coating, J. Electrochem. Soc., 166, A143-A150 (2019). https://doi.org/10.1149/2.0451902jes
- M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, and J. Janek, Increased performance improvement of lithium-ion batteries by dry powder coating of high-nickel nmc with nano-structured fumed ternary lithium metal oxides, ACS Appl. Energy Mater., 4, 8832-8848 (2021). https://doi.org/10.1021/acsaem.1c00939
- H. B. Lee, T. D. Hoang, Y. S. Byeon, H. Jung, J. Moon, and M. S. Park, Surface stabilization of Ni-rich layered cathode materials via surface engineering with LiTaO3 for lithium-ion batteries, ACS Appl. Mater. Interfaces, 14, 2731-2741 (2022). https://doi.org/10.1021/acsami.1c19443
- H. Yu, S. Wang, Y. Hu, G. He, L. Q. Bao, I. P. Parkin, and H. Jiang, Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2 Mn0.3O2 cathode with enhanced rate and cyclability, Green Energy Environ., 7, 266-274 (2022). https://doi.org/10.1016/j.gee.2020.09.011
- T. Sattar, S. J. Sim, S. G. Doo, B. S. Jin, and H. S. Kim, A synergetic modification approach toward high capacity Ni-rich cathode materials for next generation lithium-ion batteries, Solid State Ion., 387, 116053 (2022).
- J. Chen, B. Su, J. Fan, B. Chu, G. Li, T. Huang, and A. Yu, A low-temperature coating method with H3BO3 for enhanced electrochemical performance of Ni-rich LiNi0.82Co0.12Mn0.06O2 cathode, Electrochim. Acta, 422, 140564 (2022).
- H. Zhang, J. Xu, and J. Zhang, Surface-Coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries, Front. Mater., 6, 309 (2019).
- Z. Guo, X. Shi, L. Cao, J. Zhang, X. Zhang, J. Yao, Y. J. Cheong, and Y. Xia, In situ formation of a LiBO2 coating layer and spinel phase for Ni-rich cathode materials from a boric acid-etched precursor, ACS Appl. Mater. Interfaces, 16, 731-741 (2024). https://doi.org/10.1021/acsami.3c14342
- S. Gao, B. Shi, J. Liu, L. Wang, C. Zhou, C. Guo, J. Zhang, and W. Li, Boron doping and LiBO2 coating synergistically enhance the high-rate performance of LiNi0.6Co0.1Mn0.3O2 cathode materials, ACS Sustain. Chem. Eng., 9, 5322-5333 (2021). https://doi.org/10.1021/acssuschemeng.0c09265
- M. Zhang, M. Zhu, W. Dai, C. Yao, X. Zhu, Z. Chen, C. Liu, and F. Chen, Surface coating with Li3BO3 protection layer to enhance the electrochemical performance and safety properties of Ni-rich LiNi0.85Co0.05Mn0.10O2 cathode material, Powder Technol., 394, 448-458 (2021). https://doi.org/10.1016/j.powtec.2021.08.083
- W. G. Ryu, H. S. Shin, M. S. Park, H. Kim, K. N. Jung, and J. W. Lee, Mitigating storage-induced degradation of Ni-rich LiNi0.6Co0.1Mn0.1O2cathode material by surface tuning with phosphate, Ceram. Inter., 45, 13942-13950 (2019). https://doi.org/10.1016/j.ceramint.2019.04.092
- J. Zhu, Y. Li, L. Xue, Y. Chen, T. Lei, S. Deng, and G. Cao, Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.6Co0.1Mn0.1]O2 cathode material via lithium-reactive coating, J. Alloys Compd., 773, 112-120 (2019). https://doi.org/10.1016/j.jallcom.2018.09.237
- T. Sattar, S. J. Sim, B. S. Jin, and H. S. Kim, Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries, Sci. Rep., 11, 18590 (2021).
- Q. Gan, N. Qin, Z. Wang, Z. Li, Y. Zhu, Y. Li, S. Gu, H. Yuan, W. Luo, L. Lu, Z. XU, and Z. Lu, Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-Rich layered cathodes, ACS Appl. Energy Mater., 3, 7445-7455 (2020). https://doi.org/10.1021/acsaem.0c00859
- W. Xiao, Y. Nie, C. Miao, J. Wang, Y. Tan, and M. Wen, Structural design of high-performance Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials enhanced by Mg2+ doping and Li3PO4 coating for lithium ion battery, J. Colloid Interface Sci., 607, 1071-1082 (2022). https://doi.org/10.1016/j.jcis.2021.09.067
- H. Sun, J. Wang, Q. Liu, Y. Zhang, D. Zhang, Q. Wang, Z. Li, W. Li, and B. Wang, Ag-Sn dual-modified LiNi0.8Co0.1Mn0.1O2 as cathode for lithium storage, J. Alloys Compd., 850, 156763 (2021).
- H. Ding, M. Fang, Y. Li, L. Huang, C. Zhang, and X. Luo, Enhanced lithium storage capability of Ni-rich LiNi0.9CoxMn0.1-xO2(0 ≤ x ≤ 0.1) cathode by co-operation of Al-doping and V-coating, J. Alloys Compd., 946, 169428 (2023).
- G. Mao, J. Luo, Q. Zhou, F. Xiao, R. Tang, J. Li, L. Zeng, and Y. Wang, Improved cycling stability of high nickel cathode material for lithium ion battery through Al- and Ti-based dual modification, Nanoscale, 13, 18741-18753 (2021). https://doi.org/10.1039/D1NR06005H
- H. N. Kim, and T. Yim, Rational design of multifunctional surface modification for Ni-rich layered cathodes of lithium-ion batteries, ACS Appl. Energy Mater., 6, 12389-12399 (2023). https://doi.org/10.1021/acsaem.3c02248
- V. C. Ho, M. Hong, T. B. T. Hoang, T. T. Mai, and J. Mun, Complementary lithium aluminum borate coating of Ni-rich cathode by synergetic boric acid and aluminum hydroxide for lithium-ion batteries, Mater. Today Energy, 35, 101329 (2023).
- Y. Bei, Y. Zhang, Y. Li, Y. Song, L. Liu, J. Ma, and J. Liu, Controlled preparation of nano-Al2O3/PPy composite coatings to compensate surface structural defects of lithium-rich layered oxides, J. Alloys Compd., 928, 167140 (2022).
- S. A. Yu, J. K. Seo, J. M. Yun, H. Park, Y. Jeon, J. Park, M. S. Park and Y. J. Kim, Hybrid surface coating layers comprising boron and phosphorous compounds on LiNi0.90Co0.05Mn0.05O2 cathode materials to ensure the reliability of lithium-ion batteries, Mater. Today Energy, 37, 101377 (2023).
- Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu, and Z. Lu, Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1 Mn0.1O2 with enhanced cyclability for lithium-ion batteries, ACS Appl. Mater. Interfaces, 11, 12594-12604 (2019). https://doi.org/10.1021/acsami.9b04050
- Y. Cao, X. Qi, K. Hu, Y. Wang, Z. Gan, Y. Li, G. Hu, Z. Peng and K. Du, Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries, ACS Appl. Mater. Interfaces, 10, 18270-18280 (2018). https://doi.org/10.1021/acsami.8b02396
- S. W. Doo, S. Lee, H. Kim, J. H. Choi, and K. T. Lee, Hydrophobic Ni-rich layered oxides as cathode materials for lithium-ion batteries, ACS Appl. Energy Mater., 2, 6246-6253 (2019). https://doi.org/10.1021/acsaem.9b00786
- K. Wang, Q. Mao, X. Lu, J. Zhang, H. Huang, Y. Gan, X. He, W. Zhang, and Y. Xia, Fluorides coated Ni-rich cathode materials with enhanced surficial chemical stability for advanced lithium-ion battery, Sustain. Mater. Technol., 38, e00713 (2023).
- P. S. Lianos, Z. Ahaliabadeh, V. Miikkulainen, J. Lahtinen, L. Yao, H. Jiang, T. Kankaanpaa, and T. M. Kallio, High voltage cycling stability of LiF-Coated NMC811 electrode, ACS Appl. Mater. Interfaces, 16, 2216-2230 (2024). https://doi.org/10.1021/acsami.3c14394
- X. Lu, Q. Mao, Y. Wang, T. Ji, Y. Zeng, Y. Xu, Y. Xia, R. Shan, P. Xu, Y. Cai, and J. Yao, Effect of lithium to zirconium ratio on microstructure and electrochemical performances of LZO modified LiNi0.8Co0.1Mn0.1O2 cathode materials, Surf. Interfaces, 36, 102480 (2023).
- S. J. Sim, S. H. Lee, B. S. Jin, and H. S. Kim, Effects of lithium tungsten oxide coating on LiNi0.90Co0.05Mn0.05O2 cathode material for lithium-ion batteries, J. Power Sources, 481, 229037 (2021).
- Q. Ran, H. Zhao, Y. Hu, S. Hao, Q. Shen, J. Liu, H. Li, Y. Xiao, L. Li, L. Wang, and X. Liu, Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage, ACS Appl. Mater. Interfaces, 12, 9268-9276 (2020). https://doi.org/10.1021/acsami.9b20872
- Y. Li, C. Tan, S. Wei, L. Cui, X. Fan, Q. Pan, F. Lai, F. Zheng, H. Wang, and Q. Li, Stable surface construction of the Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material for high performance lithium-ion batteries, J. Mater. Chem. A, 8, 21649-21660 (2020). https://doi.org/10.1039/D0TA08879J