DOI QR코드

DOI QR Code

Research Trends in Coating Strategies for Residual Lithium Control in High-Nickel Li(NixCoyMn1-x-y)O2 Cathodes

고니켈 삼원계 층상구조 양극 물질의 잔류 리튬 제어를 위한 코팅 기술 연구 동향

  • Ui Yeoun Song (Department of Chemical Engineering, Chonnam National University) ;
  • Eun Ji Lee (Department of Chemical Engineering, Chonnam National University) ;
  • Ji Eun Lee (Department of Chemical Engineering, Chonnam National University)
  • 송의연 (전남대학교 화학공학부) ;
  • 이은지 (전남대학교 화학공학부) ;
  • 이지은 (전남대학교 화학공학부)
  • Received : 2024.05.13
  • Accepted : 2024.06.03
  • Published : 2024.06.10

Abstract

Li(NixCoyMn1-x-y)O2 (NCM) is the intensively developed cathode material for expanding the electric vehicle market and developing lithium-ion batteries that meet higher capacity, longer life, and lower cost. High-nickel NCM increases the nickel content to 80% or more, securing price competitiveness by improving performance with high energy density and reducing the cost of cobalt. However, the high-nickel NCM materials have a residual lithium problem, leading to issues in battery performance degradation and stability. While various methods exist for removing residual lithium, such as washing, doping, and coating, this paper focuses on recent research trends in coatings aimed at enhancing NCM performance and stability by removing residual lithium.

Li(NixCoyMn1-x-y)O2 (NCM)은 전기 자동차 시장의 확대, 더 높은 용량과 긴 수명, 저렴한 가격을 충족하는 리튬이온 배터리 개발을 위해 집중적으로 개발되고 있는 양극재이다. 기존의 NCM을 발전시킨 고니켈 NCM (high-nickel NCM)은 니켈 함량을 80% 이상으로 높임으로써 높은 에너지 밀도로 개선된 성능과 원가가 높은 코발트의 감소로 가격 경쟁력을 확보하였다. 이러한 고니켈 NCM은 높아진 니켈의 함유량 때문에 잔류 리튬(residual lithium) 문제가 커지고, 이는 배터리 성능 저하와 안정성에 문제를 야기한다. 잔류 리튬을 제거하는 방식은 세척(washing), 도핑(doping), 코팅 (coating) 등의 여러 방식이 있지만, 본 논문에서는 잔류 리튬을 없애고, NCM의 성능 향상 및 안정성을 증가시키는 코팅에 대한 다양한 개발 동향을 중점적으로 최근 연구를 살펴보고자 한다.

Keywords

Acknowledgement

이 논문은 전남대학교 학술연구비(과제번호: 2022-2906) 지원 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1A2C1011317).

References

  1. Y. Kim, H. Park, J. H. Warner, and A. Manthiram, Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries, ACS Energy Lett., 6, 941-948 (2021). https://doi.org/10.1021/acsenergylett.1c00086
  2. L. Britala, M. Marinaro, and G. Kucinskis, A review of the degradation mechanisms of NCM cathodes and corresponding mitigation strategies, J. Energy Storage, 73, 108875 (2023).
  3. H. Yu and D. Pei, A review of the origin, adverse influence and modification method of residual surface lithium in Ni-rich cathodes, Int. J. Electrochem. Sci., 19, 100391 (2023).
  4. W. M. Seong, Y. Kim, and A. Manthiram, Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries, Chem. Mater., 32, 9479-9489 (2020). https://doi.org/10.1021/acs.chemmater.0c02808
  5. A. Chen, K. Wang, J. Li, Q. Mao, Z. Xiao, D. Zhu, G. Wang, P. Liao, J. He, Y. You, and Y. Xia, The formation, detriment and solution of residual lithium compounds on Ni-rich layered oxides in lithium-ion batteries, Front. Energy Res., 8, 593009 (2020).
  6. D. H. Cho, C. H. Jo, W. Cho, Y. J. Kim, H. Yashiro, Y. K. Sun, and S. T. Myung, Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2, J. Electrochem. Soc., 161, A920-A926 (2014). https://doi.org/10.1149/2.042406jes
  7. D. Y. Hwang, S. J. Sim, B. S. Jin, H. S. Kim, and S. H. Lee, Suppressed microcracking and F penetration of Ni-rich layered cathode via the combined effects of titanium dioxide doping and coating, ACS Appl. Energy Mater., 4, 1743-1751 (2021). https://doi.org/10.1021/acsaem.0c02897
  8. W. Wang, L. Wu, Z. Li, K. Huang, J. Jiang, Z. Chen, X. Qi, H. Dou, and X. Zhang, In situ tuning residual lithium compounds and constructing TiO2 coating for surface modification of a nickel-rich cathode toward high-energy lithium-ion batteries, ACS Appl. Energy Mater., 3, 12423-12432 (2020). https://doi.org/10.1021/acsaem.0c02406
  9. V. C. Ho, S. Jeong, T, Yim, and J. Mun, Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries, J. Power Sources, 450, 227625 (2020).
  10. J. Li, J. Xiang, G. Yi, Y. Tang, H. Shao, X. Liu, B. Shan, and R. Chen, Reduction of surface residual lithium compounds for single-crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 atomic layer deposition and post-annealing, Coatings, 12, 84 (2022).
  11. F. Wu, Q. Shi, L. Chen, J. Dong, J. Zhao, H. Wang, F. Gao, J. Liu, H. Zhang, N. Li, Y. Lu, and Y. Su, New insights into dry-coating-processed surface engineering enabling structurally and thermally stable high-performance Ni-rich cathode materials for lithium ion batteries, Chem. Eng. J., 470, 144045 (2023).
  12. Y. Li, D. Zhang, Y. Yan, Y. Wang, Z. Li, X. Tan, and M. Zhang, Enhanced electrochemical properties of SiO2-Li2SiO3-coated NCM811 cathodes by reducing surface residual lithium, J. Alloys Compd., 923, 166317 (2022).
  13. Z. Li, G. Hu, Z. Luo, M. Huang, S. Zhang, K. Du, Z. Peng, X. Tan, W. Zhao, Q. Yan, and Y. cao, Ta doping and LiTaO3 coating to improve the electrochemical performance of LiNi0.925Co0.03Mn0.045O2 cathode material for lithium ion batteries, Solid State Ion., 394, 116190 (2023).
  14. Y. Mo, L. Guo, H. Jin, B. Du, B. Cao, Y. Chen, D. Li, and Y. Chen, Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries, J. Power Sources, 448, 227439 (2020).
  15. Y. Su, L. Li, G. Chen, L. Chen, N. Li, Y. Lu, L. Bao, S. Chen, and F. Wu, Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials, Chin. J. Chem., 39, 189-198 (2020).
  16. A. Martens, C. Bolli, A. Hoffmann, C. Erk, T. Ludwig, M. E. Kazzi, U. Breddmann, P. Novak, and I. Krossing, Coating of NCM 851005 cathode material with AlO@Al2O3 and subsequent treatment with anhydrous HF, J. Electrochem. Soc., 167, 070510 (2020).
  17. R. S. Negi, E. Celik, R. Pan, R. Staglich, J. Senker, and M. T. Elm, Insights into the positive effect of post-annealing on the electrochemical performance of Al2O3-coated Ni-rich NCM cathodes for lithium-ion batteries, ACS Appl. Energy Mater., 4, 3369-3380 (2021). https://doi.org/10.1021/acsaem.0c03135
  18. D. Hu, F. Du, H. Cao, Q. Zhou, P. Sun, T. Xu, C. Mei, Q. Hao, Z. Fan, and J. Zheng, An effective strategy to control thickness of Al2O3 coating layer on nickel-rich cathode materials, J. Electroanal. Chem., 880, 114910 (2021).
  19. W. Shan, H. Zhang, C. Hu, Y. Zhou, K. H. Lam, S. Wang, and X. Hou, The cycle performance of high nickel cathode materials significantly enhanced by the LiAlO2@Al2O3 dual-modified coating, Electrochim. Acta, 367, 137216 (2021).
  20. J. Wang, D. Zhao, G. Zhou, S. Wei, S. Hou, Y. Li, H. Ma, Y. Yuan, X. Yan, and X. Hou, Effects of Al2O3 and LiAlO2 Co-coating on electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode materials, Ceram. Int., 49, 15842-15850 (2023). https://doi.org/10.1016/j.ceramint.2023.01.179
  21. R. S. Negi, S. P. Culver, A. Mazilkin, T. Brezesinski, and M. T. Elm, Enhancing the electrochemical performance of LiNi(0.70)Co(0.15) Mn(0.15)O(2) cathodes using a practical solution-based Al(2)O(3) Coating, ACS Appl. Mater. Interfaces, 12, 31392-31400 (2020). https://doi.org/10.1021/acsami.0c06484
  22. V. Riesgo-Gonzalez, D. S. Hall, K. Marker, J. Slaughter, D. S. Wright, and C. P. Grey, Effect of annealing on the structure, composition, and electrochemistry of NMC811 coated with Al2O3 using an alkoxide precursor, Chem. Mater., 34, 9722-9735 (2022). https://doi.org/10.1021/acs.chemmater.2c02580
  23. W. Zhu, X. Huang, T. Liu, Z. Xie, Y. Wang, K. Tian, L. Bu, H. Wang, L. Gao, and J. Zhao, Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges, Coatings, 9, 92 (2019).
  24. S. Neudeck, A. Mazilkin, C. Reitz, P. Hartmann, J. Janek, and T. Brezesinski, Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries, Sci. Rep., 9, 5328 (2019).
  25. J. H. Kim, J. S. Park, S. H. Cho, J. M. Park, J. S. Nam, S. G. Yoon, I. D. Kim, J. W. Jung, and H. S. Kim, Stabilizing the surface of Ni-rich cathodes via facing-target sputtering for high-performance lithium-ion batteries, J. Mater. Chem. A, 10, 25009-25018 (2022). https://doi.org/10.1039/D2TA07322F
  26. M. J. Herzog, D. Esken, and J. Janek, Improved cycling performance of high-nickel NMC by dry powder coating with nanostructured fumed Al2O3, TiO2, and ZrO2: A comparison, Batter. Supercaps, 4, 1003-1017 (2021). https://doi.org/10.1002/batt.202100016
  27. M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, and J. Janek, Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries, Energy Technol., 9, 2100028 (2021).
  28. Y. Wu, M. Li, W. Wahyudi, G. Sheng, X. Miao, T. D. Anthopoulos, K. W. Huang, Y. Li, and Z. Lai, Performance and stability improvement of layered NCM lithium-ion batteries at high voltage by a microporous Al2O3 sol-gel coating, ACS Omega, 4, 13972-13980 (2019). https://doi.org/10.1021/acsomega.9b01706
  29. Y. Moryson, F. Walther, J. Sann, B. Mogwitz, S. Ahmed, S. Burkhardt, L. Chen, P. J. Klar, K. Volz, S. Fearn, M. Rohnke, and J. Janek, Analyzing nanometer-thin cathode particle coatings for lithium-ion batteries-the example of TiO2 on NCM622, ACS Appl. Energy Mater., 4, 7168-7181 (2021).
  30. L. An, W. Li, J. Wang, S. Liu, K. Jiao, L. Fan, J. Liang, Z. Liu, and Q. Du, Fabrication of high electrochemical performance ternary lithium battery using LiNi0.8Co0.1Mn0.1O2 with nano-TiO2 coating, Appl. Energy, 355, 122272 (2024).
  31. Q. Fan, K. Lin, S. Yang, S. Guan, J. Chen, S. Feng, J. Liu, L. Liu, J. Li, and Z. Shi, Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control, J. Power Sources, 477, 228745 (2020).
  32. H. Kim, J. Jang, D. Byun, H. S. Kim, and W. Choi, Selective TiO(2) nanolayer coating by polydopamine modification for highly stable ni-rich layered oxides, ChemSusChem, 12, 5253-5264 (2019). https://doi.org/10.1002/cssc.201902998
  33. W. Wang, C. Lee, D. Yu, Y. Kondo, Y. Miyahara, T. Abe, and K. Miyazaki, Effects of a solid solution outer layer of TiO2 on the surface and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathodes for lithium-ion batteries through the use of thin-film electrodes, ACS Appl. Energy Mater., 5, 5117-5126 (2022). https://doi.org/10.1021/acsaem.2c00461
  34. L. You, Y. Wen, G. Li, B. Chu, J. Wu, T. Huang, and A. yu, Nano-TiO2 coated single-crystal LiNi0.65Co0.15Mn0.2O2 for lithium-ion batteries with a stable structure and excellent cycling performance at a high cut-off voltage, J. Mater. Chem. A, 10, 5631-5641 (2022). https://doi.org/10.1039/D2TA00135G
  35. H. Pourfarzed, M. Karimi, M. Saremi, and R. Badrnezhad, Highly enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 by surface coating with Li-Ti-O nanoparticles for lithium-ion batteries, Anal. Bioanal. Electrochem., 14.7, 696-714 (2022).
  36. H. Chen, L. Xiao, P. Liu, H. Chen, Z. Xia, L. Ye, and Y. Hu, Rock salt-type LiTiO2@LiNi0.5Co0.2Mn0.3O2 as cathode materials with high capacity retention rate and stable structure, Ind. Eng. Chem. Res., 58, 18498-18507 (2019). https://doi.org/10.1021/acs.iecr.9b03276
  37. C. T. Hsieh, C. H. Chao, W. J. Ke, Y. F. Lin, H. W. Liu, Y. A. Gandomi, S. Gu, C. Y. Su, J. K. Chang, J. Li, C. C. Fu, B. C. Mallick, and R. S. Juang, Roll-to-roll atomic layer deposition of titania nanocoating on thermally stabilizing lithium nickel cobalt manganese oxide cathodes for lithium ion batteries, ACS Appl. Energy Mater., 3, 10619-10631 (2020). https://doi.org/10.1021/acsaem.0c01541
  38. S. K. Mylavarapu, F. U. Okudur, S. Yari, D. D. Sloovere, J. D'Haen, A. Shafique, M. K. V. Bael, M. Safari, and A. Hardy, Effect of TiOx surface modification on the electrochemical performances of Ni-rich (NMC-622) cathode material for lithium-ion batteries, ACS Appl. Energy Mater., 4, 10493-10504 (2021). https://doi.org/10.1021/acsaem.1c01309
  39. X. He, X. Xu, L. Wang, C. Du, X. Cheng, P. Zuo, Y. Ma, and G. Yin, Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material via Li2TiO3 nanoparticles coating, J. Electrochem. Soc., 166, A143-A150 (2019). https://doi.org/10.1149/2.0451902jes
  40. M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, and J. Janek, Increased performance improvement of lithium-ion batteries by dry powder coating of high-nickel nmc with nano-structured fumed ternary lithium metal oxides, ACS Appl. Energy Mater., 4, 8832-8848 (2021). https://doi.org/10.1021/acsaem.1c00939
  41. H. B. Lee, T. D. Hoang, Y. S. Byeon, H. Jung, J. Moon, and M. S. Park, Surface stabilization of Ni-rich layered cathode materials via surface engineering with LiTaO3 for lithium-ion batteries, ACS Appl. Mater. Interfaces, 14, 2731-2741 (2022). https://doi.org/10.1021/acsami.1c19443
  42. H. Yu, S. Wang, Y. Hu, G. He, L. Q. Bao, I. P. Parkin, and H. Jiang, Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2 Mn0.3O2 cathode with enhanced rate and cyclability, Green Energy Environ., 7, 266-274 (2022). https://doi.org/10.1016/j.gee.2020.09.011
  43. T. Sattar, S. J. Sim, S. G. Doo, B. S. Jin, and H. S. Kim, A synergetic modification approach toward high capacity Ni-rich cathode materials for next generation lithium-ion batteries, Solid State Ion., 387, 116053 (2022).
  44. J. Chen, B. Su, J. Fan, B. Chu, G. Li, T. Huang, and A. Yu, A low-temperature coating method with H3BO3 for enhanced electrochemical performance of Ni-rich LiNi0.82Co0.12Mn0.06O2 cathode, Electrochim. Acta, 422, 140564 (2022).
  45. H. Zhang, J. Xu, and J. Zhang, Surface-Coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries, Front. Mater., 6, 309 (2019).
  46. Z. Guo, X. Shi, L. Cao, J. Zhang, X. Zhang, J. Yao, Y. J. Cheong, and Y. Xia, In situ formation of a LiBO2 coating layer and spinel phase for Ni-rich cathode materials from a boric acid-etched precursor, ACS Appl. Mater. Interfaces, 16, 731-741 (2024). https://doi.org/10.1021/acsami.3c14342
  47. S. Gao, B. Shi, J. Liu, L. Wang, C. Zhou, C. Guo, J. Zhang, and W. Li, Boron doping and LiBO2 coating synergistically enhance the high-rate performance of LiNi0.6Co0.1Mn0.3O2 cathode materials, ACS Sustain. Chem. Eng., 9, 5322-5333 (2021). https://doi.org/10.1021/acssuschemeng.0c09265
  48. M. Zhang, M. Zhu, W. Dai, C. Yao, X. Zhu, Z. Chen, C. Liu, and F. Chen, Surface coating with Li3BO3 protection layer to enhance the electrochemical performance and safety properties of Ni-rich LiNi0.85Co0.05Mn0.10O2 cathode material, Powder Technol., 394, 448-458 (2021). https://doi.org/10.1016/j.powtec.2021.08.083
  49. W. G. Ryu, H. S. Shin, M. S. Park, H. Kim, K. N. Jung, and J. W. Lee, Mitigating storage-induced degradation of Ni-rich LiNi0.6Co0.1Mn0.1O2cathode material by surface tuning with phosphate, Ceram. Inter., 45, 13942-13950 (2019). https://doi.org/10.1016/j.ceramint.2019.04.092
  50. J. Zhu, Y. Li, L. Xue, Y. Chen, T. Lei, S. Deng, and G. Cao, Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.6Co0.1Mn0.1]O2 cathode material via lithium-reactive coating, J. Alloys Compd., 773, 112-120 (2019). https://doi.org/10.1016/j.jallcom.2018.09.237
  51. T. Sattar, S. J. Sim, B. S. Jin, and H. S. Kim, Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries, Sci. Rep., 11, 18590 (2021).
  52. Q. Gan, N. Qin, Z. Wang, Z. Li, Y. Zhu, Y. Li, S. Gu, H. Yuan, W. Luo, L. Lu, Z. XU, and Z. Lu, Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-Rich layered cathodes, ACS Appl. Energy Mater., 3, 7445-7455 (2020). https://doi.org/10.1021/acsaem.0c00859
  53. W. Xiao, Y. Nie, C. Miao, J. Wang, Y. Tan, and M. Wen, Structural design of high-performance Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials enhanced by Mg2+ doping and Li3PO4 coating for lithium ion battery, J. Colloid Interface Sci., 607, 1071-1082 (2022). https://doi.org/10.1016/j.jcis.2021.09.067
  54. H. Sun, J. Wang, Q. Liu, Y. Zhang, D. Zhang, Q. Wang, Z. Li, W. Li, and B. Wang, Ag-Sn dual-modified LiNi0.8Co0.1Mn0.1O2 as cathode for lithium storage, J. Alloys Compd., 850, 156763 (2021).
  55. H. Ding, M. Fang, Y. Li, L. Huang, C. Zhang, and X. Luo, Enhanced lithium storage capability of Ni-rich LiNi0.9CoxMn0.1-xO2(0 ≤ x ≤ 0.1) cathode by co-operation of Al-doping and V-coating, J. Alloys Compd., 946, 169428 (2023).
  56. G. Mao, J. Luo, Q. Zhou, F. Xiao, R. Tang, J. Li, L. Zeng, and Y. Wang, Improved cycling stability of high nickel cathode material for lithium ion battery through Al- and Ti-based dual modification, Nanoscale, 13, 18741-18753 (2021). https://doi.org/10.1039/D1NR06005H
  57. H. N. Kim, and T. Yim, Rational design of multifunctional surface modification for Ni-rich layered cathodes of lithium-ion batteries, ACS Appl. Energy Mater., 6, 12389-12399 (2023). https://doi.org/10.1021/acsaem.3c02248
  58. V. C. Ho, M. Hong, T. B. T. Hoang, T. T. Mai, and J. Mun, Complementary lithium aluminum borate coating of Ni-rich cathode by synergetic boric acid and aluminum hydroxide for lithium-ion batteries, Mater. Today Energy, 35, 101329 (2023).
  59. Y. Bei, Y. Zhang, Y. Li, Y. Song, L. Liu, J. Ma, and J. Liu, Controlled preparation of nano-Al2O3/PPy composite coatings to compensate surface structural defects of lithium-rich layered oxides, J. Alloys Compd., 928, 167140 (2022).
  60. S. A. Yu, J. K. Seo, J. M. Yun, H. Park, Y. Jeon, J. Park, M. S. Park and Y. J. Kim, Hybrid surface coating layers comprising boron and phosphorous compounds on LiNi0.90Co0.05Mn0.05O2 cathode materials to ensure the reliability of lithium-ion batteries, Mater. Today Energy, 37, 101377 (2023).
  61. Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu, and Z. Lu, Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1 Mn0.1O2 with enhanced cyclability for lithium-ion batteries, ACS Appl. Mater. Interfaces, 11, 12594-12604 (2019). https://doi.org/10.1021/acsami.9b04050
  62. Y. Cao, X. Qi, K. Hu, Y. Wang, Z. Gan, Y. Li, G. Hu, Z. Peng and K. Du, Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries, ACS Appl. Mater. Interfaces, 10, 18270-18280 (2018). https://doi.org/10.1021/acsami.8b02396
  63. S. W. Doo, S. Lee, H. Kim, J. H. Choi, and K. T. Lee, Hydrophobic Ni-rich layered oxides as cathode materials for lithium-ion batteries, ACS Appl. Energy Mater., 2, 6246-6253 (2019). https://doi.org/10.1021/acsaem.9b00786
  64. K. Wang, Q. Mao, X. Lu, J. Zhang, H. Huang, Y. Gan, X. He, W. Zhang, and Y. Xia, Fluorides coated Ni-rich cathode materials with enhanced surficial chemical stability for advanced lithium-ion battery, Sustain. Mater. Technol., 38, e00713 (2023).
  65. P. S. Lianos, Z. Ahaliabadeh, V. Miikkulainen, J. Lahtinen, L. Yao, H. Jiang, T. Kankaanpaa, and T. M. Kallio, High voltage cycling stability of LiF-Coated NMC811 electrode, ACS Appl. Mater. Interfaces, 16, 2216-2230 (2024). https://doi.org/10.1021/acsami.3c14394
  66. X. Lu, Q. Mao, Y. Wang, T. Ji, Y. Zeng, Y. Xu, Y. Xia, R. Shan, P. Xu, Y. Cai, and J. Yao, Effect of lithium to zirconium ratio on microstructure and electrochemical performances of LZO modified LiNi0.8Co0.1Mn0.1O2 cathode materials, Surf. Interfaces, 36, 102480 (2023).
  67. S. J. Sim, S. H. Lee, B. S. Jin, and H. S. Kim, Effects of lithium tungsten oxide coating on LiNi0.90Co0.05Mn0.05O2 cathode material for lithium-ion batteries, J. Power Sources, 481, 229037 (2021).
  68. Q. Ran, H. Zhao, Y. Hu, S. Hao, Q. Shen, J. Liu, H. Li, Y. Xiao, L. Li, L. Wang, and X. Liu, Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage, ACS Appl. Mater. Interfaces, 12, 9268-9276 (2020). https://doi.org/10.1021/acsami.9b20872
  69. Y. Li, C. Tan, S. Wei, L. Cui, X. Fan, Q. Pan, F. Lai, F. Zheng, H. Wang, and Q. Li, Stable surface construction of the Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material for high performance lithium-ion batteries, J. Mater. Chem. A, 8, 21649-21660 (2020). https://doi.org/10.1039/D0TA08879J