DOI QR코드

DOI QR Code

효과적인 CO2 분리를 위한 혼합 기질 분리막 충진 소재로서의 2차원 나노물질

Two-Dimensional Nanomaterials Used as Fillers in Mixed-Matrix Membranes for Effective CO2 Separation

  • ;
  • 지호빈 (경상국립대학교 해양환경공학과) ;
  • 양은태 (경상국립대학교 해양환경공학과)
  • Khirul Md Akhte (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Hobin Jee (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Euntae Yang (Department of Marine Environmental Engineering, Gyeongsang National University)
  • 투고 : 2024.04.29
  • 심사 : 2024.05.24
  • 발행 : 2024.06.10

초록

최근, 기존 분리막의 성능을 향상시켜 CO2 분리를 효율적으로 수행하기 위한 중요한 연구가 진행되고 있다. 이는 탄소포집 공정에서의 활용을 확대하는 것을 목표로 하고 있다. 분리막 기술은 비용 및 에너지 효율성, 연속 운전, 작은 공정 크기 등의 장점으로 인해 탄소제로 이슈에 대처하는 유망한 탄소 포집 기술로 부상하고 있다. 연구된 여러 종류의 분리막 중 혼합기질막(mixed-matrix membrane, MMM)이 전반적인 가스 분리 공정의 효율을 향상시킬 수 있는 전통적인 분리막의 대안으로 제안되었다. 2D 나노소재는 쉬운 개질과 기능화, 다른 재료와의 결합 등 특징적인 성질로 인해 다양한 일반적인 2D 나노소재들이 가스 분리를 위한 효율적인 MMMs 제작에 사용되고 있다. 본 논문은 2D 나노소재를 사용한 MMMs 분야의 최근 발전을 검토하였다. 또한, CO2 분리 및 포집을 위한 2D 나노소재 기반 분리막의 현재 도전과 전망을 논의하였다.

In recent years, significant research has been conducted to enhance the performance of existing membranes for efficient CO2 capture, aiming to expand their application in carbon capture processes. Membrane technology has emerged as a promising carbon capture approach to addressing the net-zero challenge due to its cost and energy efficiency, continuous operation, and compact process size. Among the various types of membranes studied, mixed-matrix membranes (MMMs) have been proposed as an alternative to conventional membranes to enhance the efficiency of gas separation processes. Various common 2D nanomaterials, characterized by their ease of modification, functionalization, and compatibility with other materials, have been used to create efficient MMMs for gas separation. This article comprehensively reviews the recent developments in MMMs using 2D nanomaterials. It also discusses the current challenges and prospects of 2D nanomaterial-based membranes for CO2 separation and capture.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1C1C1013172, RS-2023-00259994, and RS-2023-00217317).

참고문헌

  1. M. I. F. Zainuddin, and A. L. Ahmad, Mixed-matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture, J. CO2 Util., 62, 102094 (2022).
  2. D. M. D'Alessandro, B. Smit, and J. R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082 (2010). https://doi.org/10.1002/anie.201000431
  3. P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, and T. E. Muller, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci., 5, 7281-7305 (2012). https://doi.org/10.1039/c2ee03403d
  4. B. Marzeion, G. Kaser, F. Maussion, and N. Champollion, Limited influence of climate change mitigation on short-term glacier mass loss, Nat. Clim. Change, 8, 305-308 (2018). https://doi.org/10.1038/s41558-018-0093-1
  5. Y. Z. Ghouali, M. Belmokaddem, M. A. Sahraoui, and M. S. Guellil, Factors affecting CO2 emissions in the BRICS countries: A Panel Data Analysis, Proc. Econ. Financ., 26, 114-125 (2015). https://doi.org/10.1016/S2212-5671(15)00890-4
  6. D. X. Yang, Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lu, First global carbon dioxide maps produced from tansat measurements, Adv. Atmos. Sci., 35, 621-623 (2018). https://doi.org/10.1007/s00376-018-7312-6
  7. A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359, 115-125 (2010). https://doi.org/10.1016/j.memsci.2009.11.040
  8. Y. X. Chen, and W. S. W. Ho, High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas, J. Membr. Sci., 514, 376-384 (2016). https://doi.org/10.1016/j.memsci.2016.05.005
  9. J. H. Gao, Y. Song, C. Y. Jia, L. Y. Sun, Y. Wang, Y. X. Wang, M. J. Kipper, L. J. Huang, and J. G. Tang, A comprehensive review of recent developments and challenges for gas separation membranes based on two-dimensional materials, Flatchem, 43, 100594 (2024).
  10. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol., 188, 431-450 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
  11. T. Li, Y. C. Pan, K. V. Peinemann, and Z. P. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425, 235-242 (2013).
  12. C. F. Zhang, Y. Y. Wu, Y. Zhang, Y. X. Bai, J. Gu, and Y. P. Sun, Poly(ether-b-amide)/ethylene glycol monophenyl ether gel membrane with superior CO2/N2 separation performance fabricated by thermally induced phase separation method, J. Membr. Sci., 508, 136-145 (2016). https://doi.org/10.1016/j.memsci.2016.02.030
  13. G. Xu, F. F. Liang, Y. P. Yang, Y. Hu, K. Zhang, and W. Y. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies, 7, 3484-3502 (2014). https://doi.org/10.3390/en7053484
  14. G. Xu, L. Li, Y. P. Yang, L. H. Tian, T. Liu, and K. Zhang, A novel CO2 cryogenic liquefaction and separation system, Energy, 42, 522-529 (2012). https://doi.org/10.1016/j.energy.2012.02.048
  15. S. Sridhar, B. Smitha, and T. M. Aminabhavi, Separation of carbon dioxide from natural gas mixtures through polymeric membranes - A review, Sep. Purif. Rev., 36, 113-174 (2007). https://doi.org/10.1080/15422110601165967
  16. N. Y. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, Advances in high permeability polymeric membrane materials for CO2 separations, Energy Environ. Sci., 5, 7306-7322 (2012). https://doi.org/10.1039/C1EE02668B
  17. J. Y. Xu, H. Y. Wu, Z. Wang, Z. H. Qiao, S. Zhao, and J. X. Wang, Recent advances on the membrane processes for CO2 separation, Chin. J. Chem. Eng., 26, 2280-2291 (2018). https://doi.org/10.1016/j.cjche.2018.08.020
  18. S. Roussanaly, and R. Anantharaman, Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources, Chem. Eng. J., 327, 618-628 (2017). https://doi.org/10.1016/j.cej.2017.06.082
  19. M. Pera-Titus, Porous inorganic membranes for CO2 capture: present and prospects, Chem. Rev., 114, 1413-1492 (2014). https://doi.org/10.1021/cr400237k
  20. S. F. Wang, X. Q. Li, H. Wu, Z. Z. Tian, Q. P. Xin, G. W. He, D. D. Peng, S. L. Chen, Y. Yin, Z. Y. Jiang, and M. D. Guiver,Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci., 9, 1863-1890 (2016). https://doi.org/10.1039/C6EE00811A
  21. X. C. Yang, W. J. Zheng, Y. Xi, W. X. Guan, X. M. Yan, X. H. Ruan, C. H. Ma, Y. Dai, and G. H. He, Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation, J. Membr. Sci., 624, 119046 (2021).
  22. Z. G. Wang, H. T. Ren, S. X. Zhang, F. Zhang, and J. Jin, Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation, J. Mater. Chem. A., 5, 10968-10977 (2017). https://doi.org/10.1039/C7TA01773A
  23. Z. K. Li, Y. Y. Wei, X. Gao, L. Ding, Z. Lu, J. J. Deng, X. F. Yang, J. Caro, and H. H. Wang, Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets, Angew. Chem. Int. Ed., 59, 9751-9756 (2020). https://doi.org/10.1002/anie.202002935
  24. M. Kalaj, K. C. Bentz, S. Ayala, J. M. Palomba, K. S. Barcus, Y. Katayama, and S. M. Cohen, MOF-polymer hybrid materials: from simple composites to tailored architectures, Chem. Rev., 120, 8267-8302 (2020). https://doi.org/10.1021/acs.chemrev.9b00575
  25. Z. G. Wang, H. T. Ren, S. X. Zhang, F. Zhang, and J. Jin, Carbon molecular sieve membranes derived from troger's base-based microporous polyimide for gas separation, ChemSusChem, 11, 916-923 (2018). https://doi.org/10.1002/cssc.201702243
  26. Y. H. Chu, D. Yancey, L. R. Xu, M. Martinez, M. Brayden, and W. Koros, Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations, J. Membr. Sci., 548, 609-620 (2018). https://doi.org/10.1016/j.memsci.2017.11.052
  27. B. Gye, I. Kammakakam, H. You, S. Nam, and T.-H. Kim, PEG-imidazolium-incorporated polyimides as high-performance CO2-selective polymer membranes: The effects of PEG-imidazolium content, Sep. Purif. Technol., 179, 283-290 (2017). https://doi.org/10.1016/j.seppur.2017.02.020
  28. I. Hossain, S. Y. Nam, C. Rizzuto, G. Barbieri, E. Tocci, and T.-H. Kim, PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances, J. Membr. Sci., 574, 270-281 (2019). https://doi.org/10.1016/j.memsci.2018.12.084
  29. H. Y. Hwang, S. Y. Nam, H. C. Koh, S. Y. Ha, G. Barbieri, and E. Drioli, The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation, J. Ind. Eng. Chem, 18, 205-211 (2012). https://doi.org/10.1016/j.jiec.2011.11.021
  30. I. Kammakakam, H. W. Kim, S. Y. Nam, H. B. Park, and T.-H. Kim, Alkyl imidazolium-functionalized cardo-based poly (ether ketone) s as novel polymer membranes for O2/N2 and CO2/N2 separations, Polymer, 54, 3534-3541 (2013). https://doi.org/10.1016/j.polymer.2013.05.006
  31. I. Kammakakam, A. H. Rao, H. W. Yoon, S. Y. Nam, H. B. Park, and T.-H. Kim, An imidazolium-based ionene blended with crosslinked PEO as a novel polymer membrane for selective CO2 separation, Macromol. Res., 22, 907-916 (2014). https://doi.org/10.1007/s13233-014-2125-7
  32. I. Kammakakam, H. W. Yoon, S. Y. Nam, H. B. Park, and T.-H. Kim, Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation, J. Membr. Sci., 487, 90-98 (2015). https://doi.org/10.1016/j.memsci.2015.03.053
  33. V. Vijayakumar, J. H. Kim, and S. Y. Nam, Piperidinium functionalized poly (2, 6 dimethyl 1, 4 phenylene oxide) based polyionic liquid/ionic liquid (PIL/IL) composites for CO2 separation, J. Ind. Eng. Chem, 99, 81-89 (2021). https://doi.org/10.1016/j.jiec.2021.04.013
  34. Y. Y. Dai, Z. H. Niu, Y. Y. Wang, S. Y. Zhong, P. Mu, and J. Li, Recent advances and prospect of emerging microporous membranes for high-performance CO2 capture, Sep. Purif. Technol., 318, 123992 (2023).
  35. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  36. V. T. Hoang and S. Kaliaguine, Predictive models for mixed-matrix membrane performance: A review, Chem. Rev., 113, 4980-5028 (2013). https://doi.org/10.1021/cr3003888
  37. M. H. Huang, Z. G. Wang, and J. Jin, Two-dimensional microporous material-based mixed matrix membranes for gas separation, Chem. Asian J., 15, 2303-2315 (2020). https://doi.org/10.1002/asia.202000053
  38. Y. Y. Dai, Z. H. Niu, W. J. Luo, Y. Y. Wang, P. Mu, and J. Li, A review on the recent advances in composite membranes for CO2 capture processes, Sep. Purif. Technol., 307, 122752 (2023).
  39. Y. Zhang, S. Zhang, J. Gao, and T. S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci., 515, 230-237 (2016). https://doi.org/10.1016/j.memsci.2016.05.035
  40. A. Gugliuzza, A. Politano, and E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology, Curr. Opin. Chem. Eng., 16, 78-85 (2017). https://doi.org/10.1016/j.coche.2017.03.003
  41. T. S. Yang, H. Lin, K. P. Loh, and B. H. Jia, Fundamental Transport Mechanisms and Advancements of Graphene Oxide Membranes for Molecular Separation, Chem. Mater., 31, 1829-1846 (2019). https://doi.org/10.1021/acs.chemmater.8b03820
  42. M. M. Chen, F. Soyekwo, Q. G. Zhang, C. Hu, A. M. Zhu, and Q. L. Liu, Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation, J. Ind. Eng. Chem, 63, 296-302 (2018). https://doi.org/10.1016/j.jiec.2018.02.030
  43. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis, Zeolite membranes - A review and comparison with MOFs, Chem. Soc. Rev., 44, 7128-7154 (2015). https://doi.org/10.1039/C5CS00292C
  44. J. Jimmy, and B. Kandasubramanian, Mxene functionalized polymer composites: Synthesis and applications, Eur. Polym. J., 122, 109367 (2020).
  45. J. Yang, W. Z. Bao, P. Jaumaux, S. T. Zhang, C. Y. Wang, and G. X. Wang, MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors, Adv. Mater. Interfaces, 6, 1802004 (2019).
  46. H. L. Wang, S. F. He, X. D. Qin, C. E. Li, and T. Li, Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes, J. Am. Chem. Soc., 140, 17203-17210 (2018). https://doi.org/10.1021/jacs.8b10138
  47. J. H. Yan, Y. W. Sun, T. T. Ji, C. H. Zhang, L. L. Liu, and Y. Liu, Room-temperature synthesis of defect-engineered ZirconiumMOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source, J. Membr. Sci., 653, 120496 (2022).
  48. Q. Q. Hou, S. Zhou, Y. Y. Wei, J. Caro, and H. H. Wang, Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation, J. Am. Chem. Soc., 142, 9582-9586 (2020).
  49. B. H. Monjezi, K. Kutonova, M. Tsotsalas, S. Henke, and A. Knebel, Current trends in metal-organic and covalent organic framework membrane materials, Angew. Chem. Int. Ed., 60, 15153-15164 (2021). https://doi.org/10.1002/anie.202015790
  50. M. Shan, B. Seoane, E. Rozhko, A. Dikhtiarenko, G. Clet, F. Kapteijn, and J. Gascon, Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 Separation, Chem. Eur. J., 22, 14467-14470 (2016). https://doi.org/10.1002/chem.201602999
  51. P. Niu, L. L. Zhang, G. Liu, and H. M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22, 4763-4770 (2012). https://doi.org/10.1002/adfm.201200922
  52. X. X. Guo, F. Z. Zhang, D. G. Evans, and X. Duan, Layered double hydroxide films: synthesis, properties and applications, Chem. Commun., 46, 5197-5210 (2010). https://doi.org/10.1039/c0cc00313a
  53. Y. Zhang, M. Zhao, X. Li, Q. Xin, X. Ding, L. Zhao, H. Ye, L. Lin, H. Li, and Y. Zhang, Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure, J. Ind. Eng. Chem, 125, 200-210 (2023). https://doi.org/10.1016/j.jiec.2023.05.029
  54. A. R. Kamble, C. M. Patel, and Z. V. P. Murthy, A review on the recent advances in mixed matrix membranes for gas separation processes, Renew. Sustain. Energy Rev., 145, 111062 (2021).
  55. M. Asghari, S. Saadatmandi, and M. Afsari, Graphene oxide and its derivatives for gas separation membranes, ChemBioEng Rev., 8, 490-516 (2021). https://doi.org/10.1002/cben.202000038
  56. B. Li, H. M. Wen, Y. Yu, Y. Cui, W. Zhou, B. Chen, and G. Qian, Nanospace within metal-organic frameworks for gas storage and separation, Mater. Today Nano, 2, 21-49 (2018). https://doi.org/10.1016/j.mtnano.2018.09.003
  57. K. Duan, J. Wang, Y. T. Zhang, and J. D. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, J. Membr. Sci., 572, 588-595 (2019). https://doi.org/10.1016/j.memsci.2018.11.054
  58. J. Shen, G. Z. Liu, Y. F. Ji, Q. Liu, L. Cheng, K. C. Guan, M. C. Zhang, G. P. Liu, J. Xiong, J. Yang, and W. Q. Jin, 2D MXene nanofilms with tunable gas transport channels, Adv. Funct. Mater., 28, 1801151 (2018).
  59. Y. Wang, G. Q. Tan, M. Y. Dang, S. H. Dong, Y. Liu, T. Liu, H. J. Ren, A. Xia, and L. Lv, Study on surface modification of g-C3N4 photocatalyst, J. Alloys Compd., 908, 164507 (2022).
  60. P. Lu, Y. Liu, T. T. Zhou, Q. Wang, and Y. S. Li, Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations, J. Membr. Sci., 567, 89-103 (2018). https://doi.org/10.1016/j.memsci.2018.09.041
  61. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, and R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature, 461, 246-249 (2009). https://doi.org/10.1038/nature08288
  62. Y. Peng, Y. S. Li, Y. J. Ban, and W. S. Yang, Two-dimensional metal-organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed., 56, 9757-9761 (2017). https://doi.org/10.1002/anie.201703959
  63. Y. Peng, Y. S. Li, Y. J. Ban, H. Jin, W. M. Jiao, X. L. Liu, and W. S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 346, 1356-1359 (2014). https://doi.org/10.1126/science.1254227
  64. J. A. Foster, S. Henke, A. Schneemann, R. A. Fischer, and A. K. Cheetham, Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets, Chem. Commun., 52, 10474-10477 (2016). https://doi.org/10.1039/C6CC05154E
  65. A. Gallego, C. Hermosa, O. Castillo, I. Berlanga, C. J. Gomez-Garcia, E. Mateo-Marti, J. I. Martinez, F. Flores, C. Gomez-Navarro, J. Gomez-Herrero, S. Delgado, and F. Zamora, Solvent-induced delamination of a multifunctional two dimensional coordination polymer, Adv. Mater., 25, 2141-2146 (2013). https://doi.org/10.1002/adma.201204676
  66. Y. J. Ding, Y. P. Chen, X. L. Zhang, L. Chen, Z. H. Dong, H. L. Jiang, H. X. Xu, and H. C. Zhou, Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent, J. Am. Chem. Soc., 139, 9136-9139 (2017). https://doi.org/10.1021/jacs.7b04829
  67. K. Varoon, X. Y. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C. Y. Sung, M. Cococcioni, L. F. Francis, A. V. McCormick, K. A. Mkhoyan, and M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science, 334, 72-75 (2011). https://doi.org/10.1126/science.1208891
  68. S. Yang, W. X. Niu, A. L. Wang, Z. X. Fan, B. Chen, C. L. Tan, Q. P. Lu, and H. Zhang, Ultrathin Two-Dimensional organic-inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability, Angew. Chem. Int. Ed., 56, 4252-4255 (2017). https://doi.org/10.1002/anie.201701134
  69. S. Alam, M. A. Chowdhury, A. Shahid, R. Alam, and A. Rahim, Synthesis of emerging two-dimensional (2D) materials-Advances, challenges and prospects, Flatchem, 30, 100305 (2021).
  70. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. L. I. Xamena, and J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater., 14, 48-55 (2015). https://doi.org/10.1038/nmat4113
  71. L. Ding, Y. Y. Wei, L. B. Li, T. Zhang, H. H. Wang, J. Xue, L. X. Ding, S. Q. Wang, J. Caro, and Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun., 9, 155 (2018).
  72. M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb Carbon: A review of graphene, Chem. Rev., 110, 132-145 (2010). https://doi.org/10.1021/cr900070d
  73. K. H. Thebo, X. T. Qian, Q. Zhang, L. Chen, H. M. Cheng, and W. C. Ren, Highly stable graphene-oxide-based membranes with superior permeability, Nat. Commun., 9, 1486 (2018).
  74. K. H. Thebo, X. T. Qian, Q. W. Wei, Q. Zhang, H. M. Cheng, and W. C. Ren, Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation, J. Mater. Sci. Technol., 34, 1481-1486 (2018). https://doi.org/10.1016/j.jmst.2018.05.008
  75. J. Shen, G. P. Liu, K. Huang, W. Q. Jin, K. R. Lee, and N. P. Xu, Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture, Angew. Chem. Int. Ed., 54, 578-582 (2015). https://doi.org/10.1002/anie.201409563
  76. L. Huang, M. Zhang, C. Li, and G. Q. Shi, Graphene-based membranes for molecular separation, J. Phys. Chem. Lett., 6, 2806-2815 (2015). https://doi.org/10.1021/acs.jpclett.5b00914
  77. G. P. Liu, W. Q. Jin, and N. P. Xu, Graphene-based membranes, Chem. Soc. Rev., 44, 5016-5030 (2015). https://doi.org/10.1039/C4CS00423J
  78. H. Li, Z. N. Song, X. J. Zhang, Y. Huang, S. G. Li, Y. T. Mao, H. J. Ploehn, Y. Bao, and M. Yu, Ultrathin, Molecular-sieving graphene oxide membranes for selective hydrogen separation, Science, 342, 95-98 (2013). https://doi.org/10.1126/science.1236686
  79. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 448, 457-460 (2007). https://doi.org/10.1038/nature06016
  80. S. S. Chen, L. Brown, M. Levendorf, W. W. Cai, S. Y. Ju, J. Edgeworth, X. S. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Y. Kang, J. Park, and R. S. Ruoff, Oxidation resistance of graphene-coated Cu and Cu/Ni alloy, ACS Nano, 5, 1321-1327 (2011). https://doi.org/10.1021/nn103028d
  81. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
  82. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 10, 424-428 (2011). https://doi.org/10.1038/nmat3001
  83. H. Huang, W. Chen, S. Chen, and A. T. S. Wee, Bottom-up growth of epitaxial graphene on 6H-SiC(0001), ACS Nano, 2, 2513-2518 (2008). https://doi.org/10.1021/nn800711v
  84. J. Lee, and N. R. Aluru, Water-solubility-driven separation of gases using graphene membrane, J. Membr. Sci., 428, 546-553 (2013). https://doi.org/10.1016/j.memsci.2012.11.006
  85. S. P. Koenig, L. D. Wang, J. Pellegrino, and J. S. Bunch, Selective molecular sieving through porous graphene, Nat. Nanotechnol., 7, 728-732 (2012). https://doi.org/10.1038/nnano.2012.162
  86. G. W. He, S. Q. Huang, L. F. Villalobos, J. Zhao, M. Mensi, E. Oveisi, M. Rezaei, and K. V. Agrawal, High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target, Energy Environ. Sci., 12, 3305-3312 (2019). https://doi.org/10.1039/C9EE01238A
  87. Z. Q. Tian, S. M. Mahurin, S. Dai, and D. E. Jiang, Ion-gated gas separation through porous graphene, Nano Lett., 17, 1802-1807 (2017). https://doi.org/10.1021/acs.nanolett.6b05121
  88. W. Guo, S. M. Mahurin, R. R. Unocic, H. M. Luo, and S. Dai, Broadening the gas separation utility of monolayer nanoporous graphene membranes by an ionic liquid gating, Nano Lett., 20, 7995-8000 (2020). https://doi.org/10.1021/acs.nanolett.0c02860
  89. T. Wang, L. Zhao, J. N. Shen, L. G. Wu, and B. Van der Bruggen, Enhanced performance of polyurethane hybrid membranes for CO2 separation by incorporating graphene oxide: the relationship between membrane performance and morphology of graphene oxide, Environ. Sci. Technol., 49, 8004-8011 (2015). https://doi.org/10.1021/acs.est.5b00138
  90. X. Q. Li, Y. D. Cheng, H. Y. Zhang, S. F. Wang, Z. Y. Jiang, R. L. Guo, and H. Wu, Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes, ACS Appl. Mater. Interfaces, 7, 5528-5537 (2015). https://doi.org/10.1021/acsami.5b00106
  91. S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X. Cao, M. D. Guiver, and Z. Jiang, A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture, Energy Environ. Sci., 9, 3107-3112 (2016). https://doi.org/10.1039/C6EE01984F
  92. H. Li, X. X. Ding, Y. T. Zhang, and J. D. Liu, Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation, J. Membr. Sci., 543, 58-68 (2017). https://doi.org/10.1016/j.memsci.2017.08.046
  93. D. C. Wang, D. D. Yao, Y. D. Wang, F. Wang, Y. Y. Xin, S. Song, Z. L. Zhang, F. F. Su, and Y. P. Zheng, Carbon nanotubes and graphene oxide-based solvent-free hybrid nanofluids functionalized mixed-matrix membranes for efficient CO2/N2 separation, Sep. Purif. Technol., 221, 421-432 (2019). https://doi.org/10.1016/j.seppur.2019.04.005
  94. T. C. Huang, Y. C. Liu, G. S. Lin, C. H. Lin, W. R. Liu, and K. L. Tung, Fabrication of pebax-1657-based mixed-matrix membranes incorporating N-doped few-layer graphene for carbon dioxide capture enhancement, J. Membr. Sci., 602, 117946 (2020).
  95. E. Yang, K. Goh, C. Y. Chuah, R. Wang, and T. H. Bae, Asymmetric mixed-matrix membranes incorporated with nitrogen-doped graphene nanosheets for highly selective gas separation, J. Membr. Sci., 615, 118293 (2020).
  96. J. P. Hou, X. Q. Li, R. L. Guo, J. S. Zhang, and Z. M. Wang, Mixed matrix membranes with fast and selective transport pathways for efficient CO2 separation, Nanotechnology, 29, 125706 (2018).
  97. K. J. Berean, J. Z. Ou, M. Nour, M. R. Field, M. M. Y. A. Alsaif, Y. C. Wang, R. Ramanathan, V. Bansal, S. Kentish, C. M. Doherty, A. J. Hill, C. McSweeney, R. B. Kaner, and K. Kalantar-zadeh, Enhanced gas permeation through graphene nanocomposites, J. Phys. Chem. C, 119, 13700-13712 (2015). https://doi.org/10.1021/acs.jpcc.5b02995
  98. F. U. Nigiz, Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved separation of CO2, Polym. Bull., 77, 2405-2422 (2020). https://doi.org/10.1007/s00289-019-02851-7
  99. R. Rea, S. Ligi, M. Christian, V. Morandi, M. G. Baschetti, and M. G. De Angelis, Permeability and selectivity of PPO/graphene composites as mixed matrix membranes for CO2 capture and gas separation, Polymers-Basel, 10, 129 (2018).
  100. F. Pazani, and A. Aroujalian, Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers, Polym. Test., 81, 106264 (2020).
  101. J. M. Luque-Alled, A. W. Ameen, M. Alberto, M. Tamaddondar, A. B. Foster, P. M. Budd, A. Vijayaraghavan, and P. Gorgojo, Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives, J. Membr. Sci., 623, 118902 (2021).
  102. T. Hou, L. Shu, K. C. Guo, X. F. Zhang, S. Zhou, M. He, and J. F. Yao, Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation, Cellulose, 27, 3277-3286 (2020). https://doi.org/10.1007/s10570-019-02962-4
  103. D. D. Peng, S. F. Wang, Z. Z. Tian, X. Y. Wu, Y. Z. Wu, H. Wu, Q. P. Xin, J. F. Chen, X. Z. Cao, and Z. Y. Jiang, Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation, J. Membr. Sci., 522, 351-362 (2017). https://doi.org/10.1016/j.memsci.2016.09.040
  104. J. Shen, M. C. Zhang, G. P. Liu, K. C. Guan, and W. Q. Jin, Size Effects of graphene oxide on mixed matrix membranes for CO2 separation, AlChE J., 62, 2843-2852 (2016). https://doi.org/10.1002/aic.15260
  105. E. A. Feijani, A. Tavassoli, H. Mahdavi, and H. Molavi, Effective gas separation through graphene oxide containing mixed matrix membranes, J. Appl. Polym. Sci., 135, 46271 (2018).
  106. S. Quan, S. W. Li, Y. C. Xiao, and L. Shao, CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture, Int. J. Greenhouse Gas Control., 56, 22-29 (2017). https://doi.org/10.1016/j.ijggc.2016.11.010
  107. R. A. Roslan, W. J. Lau, G. S. Lai, A. K. Zulhairun, Y. F. Yeong, A. F. Ismail, and T. Matsuura, Impacts of multilayer hybrid coating on PSF hollow fiber membrane for enhanced gas separation, Membranes, 10, 335 (2020).
  108. F. Shi, J. X. Sun, J. T. Wang, M. Liu, Z. K. Yan, B. Zhu, Y. F. Li, and X. Z. Cao, MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation, J. Membr. Sci., 620, 118850 (2021).
  109. M. M. Lichaei, F. Pazani, A. Aroujalian, and D. Rodrigue, Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on PEBAX and graphene oxide, Process Saf. Environ. Prot., 163, 36-47 (2022). https://doi.org/10.1016/j.psep.2022.05.024
  110. S. A. Mohammed, A. M. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W. J. Lau, N. Yusof, W. N. W. Salleh, and A. F. Ismail, CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane, Sep. Purif. Technol., 223, 142-153 (2019). https://doi.org/10.1016/j.seppur.2019.04.061
  111. B. S. Ge, T. Wang, H. X. Sun, W. Gao, and H. R. Zhao, Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation, Polym. Adv. Technol., 29, 1334-1343 (2018). https://doi.org/10.1002/pat.4245
  112. R. R. He, S. Z. Cong, J. Wang, J. D. Liu, and Y. T. Zhang, Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture, ACS Appl. Mater. Interfaces, 11, 4338-4344 (2019). https://doi.org/10.1021/acsami.8b17599
  113. Y. Dai, X. H. Ruan, Z. J. Yan, K. Yang, M. Yu, H. Li, W. Zhao, and G. H. He, Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture, Sep. Purif. Technol., 166, 171-180 (2016). https://doi.org/10.1016/j.seppur.2016.04.038
  114. Q. P. Xin, F. X. Ma, L. Zhang, S. F. Wang, Y. F. Li, H. Ye, X. L. Ding, L. G. Lin, Y. Z. Zhang, and X. Z. Cao, Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation, J. Membr. Sci., 586, 23-33 (2019). https://doi.org/10.1016/j.memsci.2019.05.050
  115. M. Alberto, R. Bhavsar, J. M. Luque-Alled, A. Vijayaraghavan, P. M. Budd, and P. Gorgojo, Impeded physical aging in PIM-1 membranes containing graphene-like fillers, J. Membr. Sci., 563, 513-520 (2018). https://doi.org/10.1016/j.memsci.2018.06.026
  116. J. Y. Chen, K. Shen, and Y. W. Li, Greening the processes of metal-organic framework synthesis and their use in sustainable catalysis, ChemSusChem, 10, 3165-3187 (2017). https://doi.org/10.1002/cssc.201700748
  117. M. Zhang, L. Ma, L. L. Wan, Y. W. Sun, and Y. Liu, Insights into the use of metal-organic framework as high-performance anticorrosion coatings, ACS Appl. Mater. Interfaces, 10, 2259-2263 (2018). https://doi.org/10.1021/acsami.7b18713
  118. Y. R. Lee, J. Kim, and W. S. Ahn, Synthesis of metal-organic frameworks: A mini review, Korean J. Chem. Eng., 30, 1667-1680 (2013). https://doi.org/10.1007/s11814-013-0140-6
  119. V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, Metal-organic frameworks: structure, properties, methods of synthesis and characterization, Russ. Chem. Rev., 85, 280-307 (2016). https://doi.org/10.1070/RCR4554
  120. M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and M. Khatami, A review on metal-organic frameworks: Synthesis and applications, Trends Anal. Chem., 118, 401-425 (2019). https://doi.org/10.1016/j.trac.2019.06.007
  121. V. R. Remya, and M. Kurian, Synthesis and catalytic applications of metal-organic frameworks: a review on recent literature, Int. Nano Lett., 9, 17-29 (2019). https://doi.org/10.1007/s40089-018-0255-1
  122. B. S. Ge, Y. Y. Xu, H. R. Zhao, H. X. Sun, Y. L. Guo, and W. G. Wang, High performance gas separation mixed matrix membrane fabricated by incorporation of functionalized submicrometer-sized metal-organic framework, Materials, 11, 1421 (2018).
  123. S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, and D. Quemener, MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties, J. Membr. Sci., 492, 21-31 (2015). https://doi.org/10.1016/j.memsci.2015.05.015
  124. G. X. Dong, H. Y. Li, and V. K. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A, 1, 4610-4630 (2013). https://doi.org/10.1039/c3ta00927k
  125. D. Bastani, N. Esmaeili, and M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem., 19, 375-393 (2013). https://doi.org/10.1016/j.jiec.2012.09.019
  126. Z. X. Zhao, X. L. Ma, A. Kasik, Z. Li, and Y. S. Lin, Gas separation properties of metal organic framework (MOF-5) membranes, Ind. Eng. Chem. Res., 52, 1102-1108 (2013). https://doi.org/10.1021/ie202777q
  127. H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li, and H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today, 21, 108-121 (2018). https://doi.org/10.1016/j.mattod.2017.07.006
  128. M. M. H. S. Buddin, and A. L. Ahmad, A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation, J. CO2 Util., 51, 101616 (2021).
  129. N. S. Bobbitt, A. S. Rosen, and R. Q. Snurr, Topological effects on separation of alkane isomers in metal-organic frameworks, Fluid Phase Equilib., 519, 112642 (2020).
  130. Q. P. Xin, L. Gao, F. X. Ma, S. F. Wang, G. Y. Xuan, X. H. Ma, M. T. Wei, L. Zhang, and Y. Z. Zhang, Preparation of mixed matrix membrane with high efficiency SO2 separation performance by photosensitive modification and enhanced adsorption of metal-organic framework, J. Mater. Sci., 58, 6185-6202 (2023). https://doi.org/10.1007/s10853-023-08369-8
  131. X. Gong, Y. J. Wang, and T. R. Kuang, ZIF-8-based membranes for carbon dioxide capture and separation, ACS Sustain. Chem. Eng., 5, 11204-11214 (2017). https://doi.org/10.1021/acssuschemeng.7b03613
  132. R. Castro-Munoz, O. de la Iglesia, V. Fila, C. Tellez, and J. Coronas, Pervaporation-assisted esterification reactions by means of mixed matrix membranes, Ind. Eng. Chem. Res., 57, 15998-16011 (2018). https://doi.org/10.1021/acs.iecr.8b01564
  133. S. H. Yuan, A. P. Isfahani, T. Yamamoto, A. Muchtar, C. Y. Wu, G. J. Huang, Y. C. You, E. Sivaniah, B. K. Chang, and B. Ghalei, Nanosized core-shell zeolitic imidazolate frameworks-based membranes for gas separation, Small Methods, 4, 2000021 (2020).
  134. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A., 103, 10186-10191 (2006). https://doi.org/10.1073/pnas.0602439103
  135. V. Nafisi, and M. B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  136. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali, and T. Matsuura, Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation, RSC Adv., 5, 30206-30215 (2015). https://doi.org/10.1039/C5RA00567A
  137. H. B. T. Jeazet, S. Sorribas, J. M. Roman-Marin, B. Zornoza, C. Tellez, J. Coronas, and C. Janiak, Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8, Eur. J. Inorg. Chem., 2016, 4363-4367 (2016). https://doi.org/10.1002/ejic.201600190
  138. J. A. Thompson, J. T. Vaughn, N. A. Brunelli, W. J. Koros, C. W. Jones, and S. Nair, Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas, Micropor. Mesopor. Mater., 192, 43-51 (2014). https://doi.org/10.1016/j.micromeso.2013.06.036
  139. W. S. Chi, S. Hwang, S. J. Lee, S. Park, Y. S. Bae, D. Y. Ryu, J. H. Kim, and J. Kim, Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture, J. Membr. Sci., 495, 479-488 (2015). https://doi.org/10.1016/j.memsci.2015.08.016
  140. Y. J. Ban, Z. J. Li, Y. S. Li, Y. Peng, H. Jin, W. M. Jiao, A. Guo, P. Wang, Q. Y. Yang, C. L. Zhong, and W. S. Yang, Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture, Angew. Chem. Int. Ed., 54, 15483-15487 (2015). https://doi.org/10.1002/anie.201505508
  141. Y. J. Ban, Y. S. Li, Y. Peng, H. Jin, W. M. Jiao, X. L. Liu, and W. S. Yang, Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties, Chem. Eur. J., 20, 11402-11409 (2014). https://doi.org/10.1002/chem.201402287
  142. T. H. Bae, J. S. Lee, W. L. Qiu, W. J. Koros, C. W. Jones, and S. Nair, A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals, Angew. Chem. Int. Ed., 49, 9863-9866 (2010). https://doi.org/10.1002/anie.201006141
  143. S. Japip, Y. C. Xiao, and T. S. Chung, Particle-size effects on gas transport properties of 6FDA-durene/ZIF-71 mixed matrix membranes, Ind. Eng. Chem. Res., 55, 9507-9517 (2016). https://doi.org/10.1021/acs.iecr.6b02811
  144. M. Yahia, Q. N. P. Le, N. Ismail, M. Essalhi, O. Sundman, A. Rahimpour, M. M. Dal-Cin, and N. Tavajohi, Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation, Micropor. Mesopor. Mater., 312, 110761 (2021).
  145. N. H. Suhaimi, Y. F. Yeong, C. W. M. Ch'ng, and N. Jusoh, Tailoring CO2/CH4 Separation performance of mixed matrix membranes by using ZIF-8 particles functionalized with different amine groups, Polymers-Basel, 11, 2042 (2019).
  146. Y. H. Zhang, Y. P. Tong, X. Y. Li, S. J. Guo, H. L. Zhang, X. Chen, K. Cai, L. H. Cheng, and W. W. He, Pebax mixed-matrix membrane with highly dispersed ZIF-8@CNTs to enhance CO2/N2 separation, ACS Omega, 6, 18559-18568 (2021). https://doi.org/10.1021/acsomega.1c00058
  147. J. W. Yuan, H. P. Zhu, J. J. Sun, Y. Y. Mao, G. P. Liu, and W. Q. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture, ACS Appl. Mater. Interfaces, 9, 38575-38583 (2017). https://doi.org/10.1021/acsami.7b12507
  148. O. G. Nik, X. Y. Chen, and S. Kaliaguine, Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci., 413, 48-61 (2012).
  149. X. Y. Chen, H. Vinh-Thang, D. Rodrigue, and S. Kaliaguine, Amine-functionalized MIL-53 metal-organic framework in polyimide mixed matrix membranes for CO2/CH4 Separation, Ind. Eng. Chem. Res., 51, 6895-6906 (2012). https://doi.org/10.1021/ie3004336
  150. D. T. C. Nguyen, H. T. N. Le, T. S. Do, V. T. Pham, D. L. Tran, V. T. T. Ho, T. V. Tran, D. C. Nguyen, T. D. Nguyen, L. G. Bach, H. K. P. Ha, and V. T. Doan, Metal-organic framework MIL-53(Fe) as an adsorbent for ibuprofen drug removal from aqueous solutions: response surface modeling and optimization, J. Chem., 2019, 5602957 (2019).
  151. J. O. Hsieh, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, MIL-53 frameworks in mixed-matrix membranes, Micropor. Mesopor. Mater., 196, 165-174 (2014). https://doi.org/10.1016/j.micromeso.2014.05.006
  152. F. Dorosti, M. Omidkhah, and R. Abedini, Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chem. Eng. Res. Des., 92, 2439-2448 (2014). https://doi.org/10.1016/j.cherd.2014.02.018
  153. N. V. Maksimchuk, O. V. Zalomaeva, I. Y. Skobelev, K. A. Kovalenko, V. P. Fedin, and O. A. Kholdeeva, Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts, Proc. R. Soc. A, 468, 2017-2034 (2012). https://doi.org/10.1098/rspa.2012.0072
  154. R. Abedini, M. Omidkhah, and F. Dorosti, Highly permeable poly(4-methyl-1-pentyne)/NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation, RSC Adv., 4, 36522-36537 (2014). https://doi.org/10.1039/C4RA07030E
  155. M. Naseri, S. F. Mousavi, T. Mohammadi, and O. Bakhtiari, Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes, J. Ind. Eng. Chem, 29, 249-256 (2015). https://doi.org/10.1016/j.jiec.2015.04.007
  156. A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. Le Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, and J. Gascon, Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance, Adv. Funct. Mater., 26, 3154-3163 (2016). https://doi.org/10.1002/adfm.201505352
  157. T. Rodenas, M. van Dalen, E. Garcia-Perez, P. Serra-Crespo, B. Zornoza, F. Kapteijn, and J. Gascon, Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI, Adv. Funct. Mater., 24, 249-256 (2014). https://doi.org/10.1002/adfm.201203462
  158. E. A. Feijani, H. Mandavi, and A. Tavasoli, Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications, Chem. Eng. Res. Des., 96, 87-102 (2015). https://doi.org/10.1016/j.cherd.2015.02.009
  159. X. Y. Dong, Q. Liu, and A. S. Huang, Highly permselective MIL-68(Al)/matrimid mixed matrix membranes for CO2/CH4 separation, J. Appl. Polym. Sci., 133, 43485 (2016).
  160. C. F. Song, R. Li, Z. C. Fan, Q. L. Liu, B. Zhang, and Y. Kitamura, CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation, Sep. Purif. Technol., 238, 116500 (2020).
  161. M. W. Anjum, B. Bueken, D. De Vos, and I. F. J. Vankelecom, MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N2, J. Membr. Sci., 502, 21-28 (2016). https://doi.org/10.1016/j.memsci.2015.12.022
  162. K. Pirzadeh, K. Esfandiari, A. A. Ghoreyshi, and M. Rahimnejad, CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study, Korean J. Chem. Eng., 37, 513-524 (2020). https://doi.org/10.1007/s11814-019-0433-5
  163. G. E. Cmarik, M. Kim, S. M. Cohen, and K. S. Walton, Tuning the adsorption properties of UiO-66 via ligand functionalization, Langmuir, 28, 15606-15613 (2012). https://doi.org/10.1021/la3035352
  164. H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their essential effects on gas adsorption, J. Am. Chem. Soc., 135, 10525-10532 (2013). https://doi.org/10.1021/ja404514r
  165. S. Biswas, and P. Van der Voort, A General strategy for the synthesis of functionalised UiO-66 Frameworks: Characterisation, stability and CO2 adsorption properties, Eur. J. Inorg. Chem., 2013, 2154-2160 (2013). https://doi.org/10.1002/ejic.201201228
  166. R. Rong, Y. W. Sun, T. T. Ji, and Y. Liu, Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via solvothermal, J. Membr. Sci., 610, 118275 (2020).
  167. J. Shen, G. P. Liu, K. Huang, Q. Q. Li, K. C. Guan, Y. K. Li, and W. Q. Jin, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, J. Membr. Sci., 513, 155-165 (2016). https://doi.org/10.1016/j.memsci.2016.04.045
  168. Q. H. Qian, A. X. Wu, W. S. Chi, P. A. Asinger, S. Lin, A. Hypsher, and Z. P. Smith, Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility, ACS Appl. Mater. Interfaces, 11, 31257-31269 (2019). https://doi.org/10.1021/acsami.9b07500
  169. Z. G. Wang, Y. Y. Tian, W. X. Fang, B. B. Shrestha, M. H. Huang, and J. Jin, Constructing strong interfacial interactions under mild conditions in MOF-incorporated mixed matrix membranes for gas separation, ACS Appl. Mater. Interfaces, 13, 3166-3174 (2021). https://doi.org/10.1021/acsami.0c19554
  170. C. Y. Chuah, J. Lee, J. H. Song, and T. H. Bae, CO2/N2 Separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities, Membranes, 10, 154 (2020).
  171. M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, and I. F. J. Vankelecom, Modulated UiO-66-based mixed-matrix membranes for CO2 separation, ACS Appl. Mater. Interfaces, 7, 25193-25201 (2015). https://doi.org/10.1021/acsami.5b08964
  172. C. Y. Chuah, S. A. S. C. Samarasinghe, W. Li, K. Goh, and T. H. Bae, Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation, Membranes, 10, 74 (2020).
  173. C. Casado-Coterillo, A. Fernandez-Barquin, B. Zornoza, C. Tellez, J. Coronas, and A. Irabien, Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation, RSC Adv., 5, 102350-102361 (2015). https://doi.org/10.1039/C5RA19331A
  174. C. Y. Chuah, W. Li, S. A. S. C. Samarasinghe, G. S. M. D. P. Sethunga, and T. H. Bae, Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals, Micropor. Mesopor. Mater., 290, 109680 (2019).
  175. X. Y. Wang, Z. Zhang, W. Q. Huang, X. F. Li, and B. Y. Yan, Preparation of highly water stable HKUST-1@Pyr composites for excellent CO2 capture capability and efficient separation of CO2/N2, Inorg. Chem. Commun., 156, 111252 (2023).
  176. M. Arjmandi, and M. Pakizeh, Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment, J. Ind. Eng. Chem., 20, 3857-3868 (2014). https://doi.org/10.1016/j.jiec.2013.12.091
  177. E. V. Perez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, J. Membr. Sci., 328, 165-173 (2009). https://doi.org/10.1016/j.memsci.2008.12.006
  178. W. B. Chen, Z. G. Zhang, L. Hou, C. C. Yang, H. C. Shen, K. Yang, and Z. Wang, Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance, Sep. Purif. Technol., 250, 117198 (2020).
  179. N. Azizi, and M. R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Pet. Sci. Technol., 36, 993-1000 (2018). https://doi.org/10.1080/10916466.2018.1458120
  180. J. Gao, H. Z. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. S. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Micropor. Mesopor. Mater., 297, 110030 (2020).
  181. Y. N. Wang, Y. X. Ren, H. Wu, X. Y. Wu, H. Yang, L. X. Yang, X. Y. Wang, Y. Z. Wu, Y. T. Liu, and Z. Y. Jiang, Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading, J. Membr. Sci., 602, 117970 (2020).
  182. S. Meshkat, S. Kaliaguine, and D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 235, 116150 (2020).
  183. S. Zhao, X. C. Cao, Z. J. Ma, Z. Wang, Z. H. Qiao, J. X. Wang, and S. C. Wang, Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal-organic frameworks, Ind. Eng. Chem. Res., 54, 5139-5148 (2015). https://doi.org/10.1021/ie504786x
  184. M. Barooah, and B. Mandal, Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane, J. Membr. Sci., 572, 198-209 (2019). https://doi.org/10.1016/j.memsci.2018.11.001
  185. M. Etxeberria-Benavides, T. Johnson, S. Cao, B. Zornoza, J. Coronas, J. Sanchez-Lainez, A. Sabetghadam, X. L. Liu, E. Andres-Garcia, F. Kapteijn, J. Gascon, and O. David, PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure, Sep. Purif. Technol., 237, 116347 (2020).
  186. Z. D. Dai, V. Loining, J. Deng, L. Ansaloni, and L. Y. Deng, Poly(1-trimethylsilyl-1-propyne)-based hybrid membranes: effects of various nanofillers and feed gas humidity on CO2 permeation, Membranes, 8, 76 (2018).
  187. J. Deng, Z. D. Dai, J. W. Hou, and L. Y. Deng, Morphologically tunable MOF nanosheets in mixed matrix membranes for CO2 separation, Chem. Mater., 32, 4174-4184 (2020). https://doi.org/10.1021/acs.chemmater.0c00020
  188. X. Y. Wu, W. Liu, H. Wu, X. Zong, L. X. Yang, Y. Z. Wu, Y. X. Ren, C. Y. Shi, S. F. Wang, and Z. Y. Jiang, Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance, J. Membr. Sci., 548, 309-318 (2018). https://doi.org/10.1016/j.memsci.2017.11.038
  189. A. Ehsani, and M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng., 66, 414-423 (2016). https://doi.org/10.1016/j.jtice.2016.07.005
  190. M. S. Boroglu, and A. B. Yumru, Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation, Sep. Purif. Technol., 173, 269-279 (2017). https://doi.org/10.1016/j.seppur.2016.09.037
  191. Q. N. Zhang, S. J. Luo, J. R. Weidman, and R. L. Guo, Preparation and gas separation performance of mixed-matrix membranes based on triptycene-containing polyimide and zeolite imidazole framework (ZIF-90), Polymer, 131, 209-216 (2017). https://doi.org/10.1016/j.polymer.2017.10.040
  192. Y. X. Sun, C. X. Geng, Z. Q. Zhang, Z. H. Qiao, and C. L. Zhong, Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation, J. Membr. Sci., 661, 120928 (2022).
  193. H. Rajati, A. H. Navarchian, and S. Tangestaninejad, Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation, Chem. Eng. Sci., 185, 92-104 (2018). https://doi.org/10.1016/j.ces.2018.04.006
  194. I. C. Ferreira, T. J. Ferreira, A. D. S. Barbosa, B. de Castro, R. P. P. L. Ribeiro, J. P. B. Mota, V. D. Alves, L. Cunha-Silva, I. A. A. C. Esteves, and L. A. Neves, Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 276, 119303 (2021).
  195. S. Meshkat, S. Kaliaguine, and D. Rodrigue, Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation, Sep. Purif. Technol., 200, 177-190 (2018). https://doi.org/10.1016/j.seppur.2018.02.038
  196. M. Z. Ahmad, M. Navarro, M. Lhotka, B. Zornoza, C. Tellez, W. M. de Vos, N. E. Benes, N. M. Konnertz, T. Visser, R. Semino, G. Maurin, V. Fila, and J. Coronas, Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives, J. Membr. Sci., 558, 64-77 (2018). https://doi.org/10.1016/j.memsci.2018.04.040
  197. Y. Z. Jiang, C. Y. Liu, J. Caro, and A. S. Huang, A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance, Micropor. Mesopor. Mater., 274, 203-211 (2019). https://doi.org/10.1016/j.micromeso.2018.08.003
  198. Y. S. Zhang, H. G. Jia, Q. J. Wang, W. Q. Ma, G. X. Yang, S. P. Xu, S. B. Li, G. M. Su, Y. Q. Qu, M. Y. Zhang, and P. F. Jiang, Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation, Membranes, 12, 34 (2022).
  199. R. Thur, N. Van Velthoven, S. Slootmaekers, J. Didden, R. Verbeke, S. Smolders, M. Dickmann, W. Egger, D. De Vos, and I. F. J. Vankelecom, Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation, J. Membr. Sci., 576, 78-87 (2019). https://doi.org/10.1016/j.memsci.2019.01.016
  200. R. J. Ling, L. Ge, H. Diao, V. Rudolph, and Z. H. Zhu, Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation, ACS Appl. Mater. Interfaces, 8, 32041-32049 (2016). https://doi.org/10.1021/acsami.6b11074
  201. B. Zornoza, B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, Combination of MOFs and zeolites for mixed-matrix membranes, ChemPhysChem, 12, 2781-2785 (2011). https://doi.org/10.1002/cphc.201100583
  202. N. Liu, J. Cheng, W. Hou, C. Yang, X. Yang, and J. H. Zhou, Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes, Sep. Purif. Technol., 282, 120007 (2022).
  203. D. C. Wang, Y. P. Ying, Y. P. Zheng, Y. C. Pu, Z. Q. Yang, and D. Zhao, Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation, J. Membr. Sci. Lett., 2, 100017 (2022).
  204. C. Wang, J. Wu, P. F. Cheng, L. P. Xu, and S. Zhang, Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture, J. Membr. Sci., 685, 121950 (2023).
  205. X. Feng, Z. K. Qin, Q. X. Lai, Z. Y. Zhang, Z. W. Shao, W. L. Tang, W. J. Wu, Z. D. Dai, and C. Liu, Mixed-matrix membranes based on novel hydroxamate metal-organic frameworks with two-dimensional layers for CO2/N2 separation, Sep. Purif. Technol., 305, 122476 (2023).
  206. S. Majumdar, B. Tokay, V. Martin-Gil, J. Campbell, R. CastroMunoz, M. Z. Ahmad, and V. Fila, Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 238, 116411 (2020).
  207. E. Roh, I. Subiyanto, W. Choi, Y. C. Park, C. H. Cho, and H. Kim, CO2/N2 and O2/N2 separation using mixed-matrix membranes with MOF-74 nanocrystals synthesized via microwave reactions, Bull. Korean Chem. Soc., 42, 459-462 (2021). https://doi.org/10.1002/bkcs.12217
  208. M. Y. Fang, C. Montoro, and M. Semsarilar, Metal and covalent organic frameworks for membrane applications, Membranes, 10, 107 (2020).
  209. T. Rasheed, S. Khan, T. Ahmad, and N. Ullah, Covalent organic frameworks-based membranes as promising modalities from preparation to separation applications: An overview, Chem. Rec., 22, e202200062 (2022).
  210. M. G. Mohamed, A. F. M. EL-Mahdy, M. G. Kotp, and S. W. Kuo, Advances in porous organic polymers: syntheses, structures, and diverse applications, Mater. Adv., 3, 707-733 (2022). https://doi.org/10.1039/D1MA00771H
  211. Y. T. Liu, H. Wu, S. Q. Wu, S. Q. Song, Z. Y. Guo, Y. X. Ren, R. Zhao, L. X. Yang, Y. Z. Wu, and Z. Y. Jiang, Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation, J. Membr. Sci., 618, 118693 (2021).
  212. X. Zhu, C. C. Tian, C. L. Do-Thanh, and S. Dai, Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation, ChemSusChem, 10, 3304-3316 (2017). https://doi.org/10.1002/cssc.201700801
  213. C. C. Zou, Q. Q. Li, Y. Y. Hua, B. H. Zhou, J. G. Duan, and W. Q. Jin, Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal, ACS Appl. Mater. Interfaces., 9, 29093-29100 (2017). https://doi.org/10.1021/acsami.7b08032
  214. Z. X. Kang, Y. W. Peng, Y. H. Qian, D. Q. Yuan, M. A. Addicoat, T. Heine, Z. G. Hu, L. Tee, Z. G. Guo, and D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater., 28, 1277-1285 (2016). https://doi.org/10.1021/acs.chemmater.5b02902
  215. B. P. Biswal, H. D. Chaudhari, R. Banerjee, and U. K. Kharul, Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation, Chem. Eur. J., 22, 4695-4699 (2016). https://doi.org/10.1002/chem.201504836
  216. R. L. Thankamony, X. Li, S. K. Das, M. M. Ostwal, and Z. P. Lai, Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations, J. Membr. Sci., 591, 117348 (2019).
  217. S. Bugel, M. Hahnel, T. Kunde, N. D. Amadeu, Y. Y. Sun, A. Spiess, T. H. Y. Beglau, B. M. Schmidt, and C. Janiak, Synthesis and characterization of a crystalline imine-based covalent organic framework with triazine node and biphenyl linker and its fluorinated derivate for CO2/CH4 separation, Materials, 15, 2807 (2022).
  218. G. Dai, Q. Zhang, S. Xiong, L. Deng, Z. Gao, A. Chen, X. Li, C. Pan, J. Tang, and G. Yu, Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation, J. Membr. Sci., 676, 121561 (2023).
  219. G. M. Jaid, A. A. Abdulrazak, H. Meskher, S. Al-Saadi, and Q. F. Alsalhy, Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) in mixed matrix membranes, Mater. Today Sustain., 25, 100672 (2024).
  220. Y. Q. Yang, K. Goh, P. Weerachanchai, and T. H. Bae, 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging, J. Membr. Sci., 574, 235-242 (2019). https://doi.org/10.1016/j.memsci.2018.12.078
  221. J. Y. Liu, M. Q. Liu, and J. J. Lu, Fabrication of polyimide and covalent organic frameworks mixed matrix membranes by in situ polymerization for preliminary exploration of CO2/CH4 separation, High Perform. Polym., 31, 671-678 (2019). https://doi.org/10.1177/0954008318783045
  222. X. Y. Wu, Z. Z. Tian, S. F. Wang, D. D. Peng, L. X. Yang, Y. Z. Wu, Q. P. Xin, H. Wu, and Z. Y. Jiang, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation, J. Membr. Sci., 528, 273-283 (2017). https://doi.org/10.1016/j.memsci.2017.01.042
  223. Y. D. Cheng, L. Z. Zhai, Y. P. Ying, Y. X. Wang, G. L. Liu, J. Q. Dong, D. Z. L. Ng, S. A. Khan, and D. Zhao, Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers, J. Mater. Chem. A, 7, 4549-4560 (2019). https://doi.org/10.1039/C8TA10333J
  224. Y. D. Cheng, Y. P. Ying, L. Z. Zhai, G. L. Liu, J. Q. Dong, Y. X. Wang, M. P. Christopher, S. C. Long, Y. X. Wang, and D. Zhao, Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation, J. Membr. Sci., 573, 97-106 (2019). https://doi.org/10.1016/j.memsci.2018.11.060
  225. R. Zhao, H. Wu, L. X. Yang, Y. X. Ren, Y. T. Liu, Z. H. Qu, Y. Z. Wu, L. Cao, Z. Chen, and Z. Y. Jiang, Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading, J. Membr. Sci., 600, 117841 (2020).
  226. X. C. Cao, Z. Wang, Z. H. Qao, S. Zhao, and J. X. Wang, Penetrated COF channels: Amino environment and suitable size for CO2 preferential adsorption and transport in mixed matrix membranes, ACS Appl. Mater. Interfaces, 11, 5306-5315 (2019). https://doi.org/10.1021/acsami.8b16877
  227. H. F. Jiang, Z. Y. Guo, H. J. Wang, X. Liu, Y. X. Ren, T. Huang, J. D. Xue, H. Wu, J. F. Zhang, Y. Yin, Z. Y. Jiang, and M. D. Guiver, Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading, J. Membr. Sci., 640, 119803 (2021).
  228. M. D. Wang, K. D. Quan, X. H. Zheng, Y. Cao, X. Y. Cui, M. Xue, and F. S. Pan, Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation, Sep. Purif. Technol., 237, 116457 (2020).
  229. X. Q. Chang, H. Y. Guo, Q. S. Chang, Z. H. Tian, Y. W. Zhang, D. Y. Li, J. Wang, and Y. T. Zhang, Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation, J. Membr. Sci., 686, 122017 (2023).
  230. Y. T. Liu, L. Y. Chen, L. F. Yang, T. H. Lan, H. Wang, C. H. Hu, X. Han, Q. X. Liu, J. F. Chen, Z. M. Feng, X. L. Cui, Q. R. Fang, H. L. Wang, L. B. Li, Y. W. Li, H. B. Xing, S. H. Yang, D. Zhao, and J. P. Li, Porous framework materials for energy & environment relevant applications: A systematic review, Green Energy Environ., 9, 217-310 (2024). https://doi.org/10.1016/j.gee.2022.12.010
  231. Y. Zhang, M. F. Tian, Z. Majeed, Y. X. Xie, K. L. Zheng, Z. D. Luo, C. Y. Li, and C. J. Zhao, Application of hydrogen-bonded organic frameworks in environmental remediation: Recent advances and future trends, Separations, 10, 196 (2023).
  232. R. B. Lin, and B. L. Chen, Hydrogen-bonded organic frameworks: Chemistry and functions, Chem, 8, 2114-2135 (2022). https://doi.org/10.1016/j.chempr.2022.06.015
  233. I. Hisaki, Hydrogen-bonded porous frameworks constructed by rigid π-conjugated molecules with carboxy groups, J. Incl. Phenom. Macrocycl. Chem., 96, 215-231 (2020). https://doi.org/10.1007/s10847-019-00972-0
  234. Y. H. Wang, Y. X. Ren, Y. Cao, X. Liang, G. W. He, H. Z. Ma, H. L. Dong, X. Fang, F. S. Pan, and Z. Y. Jiang, Engineering HOF-based mixed-matrix membranes for efficient CO2 separation, Nano-Micro Lett., 15, 50 (2023).
  235. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248-4253 (2011). https://doi.org/10.1002/adma.201102306
  236. I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water puri fication: Progress, challenges and prospects, Chem. Eng. J., 388, 124340 (2020).
  237. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502-1505 (2013). https://doi.org/10.1126/science.1241488
  238. L. Ding, Y. Y. Wei, Y. J. Wang, H. B. Chen, J. Caro, and H. H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks, Stacks, Angew. Chem. Int. Ed., 56, 1825-1829 (2017). https://doi.org/10.1002/anie.201609306
  239. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137-1140 (2016). https://doi.org/10.1126/science.aag2421
  240. W. J. Luo, Z. H. Niu, P. Mu, and J. Li, Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2, Macromolecules, 55, 9851-9859 (2022). https://doi.org/10.1021/acs.macromol.2c01532
  241. D. Magne, V. Mauchamp, S. Celerier, P. Chartier, and T. Cabioc'h, Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups, Phys. Chem. Chem. Phys., 18, 30946-30953 (2016). https://doi.org/10.1039/C6CP05985F
  242. A. Lipatov, H. D. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers, Sci. Adv., 4, eaat0491 (2018).
  243. R. Castro-Munoz, MXene: A two-dimensional material in selective water separation via pervaporation, Arab. J. Chem., 15, 103524 (2022).
  244. A. A. Shamsabadi, A. P. Isfahani, S. K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah, and M. Soroush, Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets, ACS Appl. Mater. Interfaces, 12, 3984-3992 (2020). https://doi.org/10.1021/acsami.9b19960
  245. W. Guan, X. Yang, C. Dong, X. Yan, W. Zheng, Y. Xi, X. Ruan, Y. Dai, and G. He, Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes, J. Appl. Polym. Sci., 138, 49895 (2021).
  246. G. Z. Liu, L. Cheng, G. N. Chen, F. Liang, G. P. Liu, and W. Q. Jin, Pebax-based membrane filled with two-dimensional MXene nanosheets for efficient CO2 capture, Chem. Asian J., 15, 2364-2370 (2020). https://doi.org/10.1002/asia.201901433
  247. C. Regmi, J. Azadmanjiri, V. Mishra, Z. Sofer, S. Ashtiani, and K. Friess, Cellulose triacetate-based mixed-matrix membranes with mxene 2D filler-CO2/CH4 separation performance and comparison with TiO2-based 1D and 0D fillers, Membranes, 12, 917 (2022).
  248. H. Q. Lin, K. Gong, P. Hykys, D. K. Chen, W. Ying, Z. Sofer, Y. G. Yan, Z. Li, and X. S. Peng, Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation, Chem. Eng. J., 405, 126961 (2021).
  249. Y. M. Zhang, K. Sheng, Z. Wang, W. J. Wu, B. H. Yin, J. Y. Zhu, and Y. T. Zhang, Rational design of MXene hollow fiber membranes for gas separations, Nano Lett., 23, 2710-2718 (2023). https://doi.org/10.1021/acs.nanolett.3c00004
  250. I. Ahmad, H. Jee, S. Song, M. Kim, T. Eisa, J. Jang, K.-J. Chae, C. Chuah, and E. Yang, Delaminated or multilayer Ti3C2TX-MXene-incorporated polydimethylsiloxane mixed-matrix membrane for enhancing CO2/N2 separation, Mater. Today Sustain., 23, 100410 (2023).
  251. C. Zhou, R. Shi, L. Shang, L. Z. Wu, C. H. Tung, and T. R. Zhang, Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production, Nano Res., 11, 3462-3468 (2018). https://doi.org/10.1007/s12274-018-2003-2
  252. Y. J. Ji, H. L. Dong, H. P. Lin, L. L. Zhang, T. J. Hou, and Y. Y. Li, Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane, RSC Adv., 6, 52377-52383 (2016). https://doi.org/10.1039/C6RA06425F
  253. J. G. Cui, D. W. Qi, and X. Wang, Research on the techniques of ultrasound-assisted liquid-phase peeling, thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets, Ultrason. Sonochem., 48, 181-187 (2018). https://doi.org/10.1016/j.ultsonch.2018.05.020
  254. Y. Wang, X. C. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed., 51, 68-89 (2012). https://doi.org/10.1002/anie.201101182
  255. D. J. Martin, P. J. T. Reardon, S. J. A. Moniz, and J. W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, J. Am. Chem. Soc., 136, 12568-12571 (2014). https://doi.org/10.1021/ja506386e
  256. J. Liu, Y. Yu, R. L. Qi, C. Y. Cao, X. Y. Liu, Y. J. Zheng, and W. G. Song, Enhanced electron separation on in-plane benzene-ring doped g-C3N4 nanosheets for visible light photocatalytic hydrogen evolution, Appl. Catal. B: Environ., 244, 459-464 (2019). https://doi.org/10.1016/j.apcatb.2018.11.070
  257. A. Jomekian, B. Bazooyar, J. Esmaeilzadeh, and R. M. Behbahani, Highly CO2 selective chitosan/g-C3N4/ZIF-8 membrane on polyethersulfone microporous substrate, Sep. Purif. Technol., 236, 126961 (2020).
  258. L. Cheng, Y. Y. Song, H. M. Chen, G. Z. Liu, G. P. Liu, and W. Q. Jin, g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property, Sep. Purif. Technol., 250, 117200 (2020).
  259. Z. H. Niu, W. J. Luo, P. Mu, and J. Li, Nanoconfined CO2-philic ionic liquid in laminated g-C3N4 membrane for the highly efficient separation of CO2, Sep. Purif. Technol., 297, 121513 (2022).
  260. Y. S. Zhou, Y. Zhang, J. Xue, R. Wang, Z. J. Yin, L. Ding, and H. H. Wang, Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification, Chem. Eng. J., 420, 129574 (2021).
  261. B. K. Voon, H. S. Lau, C. Z. Liang, and W. F. Yong, Functionalized two-dimensional g-C3N4 nanosheets in PIM-1 mixed matrix membranes for gas separation, Sep. Purif. Technol., 296, 121354 (2022).
  262. M. Soto-Herranz, M. Sanchez-Bascones, A. Hernandez-Gimenez, J. I. Calvo-Diez, J. Martin-Gill, and P. Martin-Ramos, Effects of protonation ,hydroxylamination, and hydrazination of g-C3N4 on the performance of Matrimid®/g-C3N4 Membranes, Nanomaterials, 8, 1010 (2018).
  263. M. Asim, A. Khan, A. Helal, W. Alshitari, U. A. Akbar, and M. Y. Khan, A 2D graphitic-polytriaminopyrimidine (g-PTAP)/poly (ether-block-amide) mixed matrix membrane for CO2 separation, Chem. Asian J., 16, 1839-1848 (2021). https://doi.org/10.1002/asia.202100390
  264. F. Guo, D. S. Li, R. Ding, J. M. Gao, X. H. Ruan, X. B. Jiang, G. H. He, and W. Xiao, Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation, Sep. Purif. Technol., 280, 119803 (2022).
  265. C. L. Tan, X. H. Cao, X. J. Wu, Q. Y. He, J. Yang, X. Zhang, J. Z. Chen, W. Zhao, S. K. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117, 6225-6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
  266. M. Sajid, S. M. S. Jillani, N. Baig, and K. Alhooshani, Layered double hydroxide-modified membranes for water treatment: Recent advances and prospects, Chemosphere, 287, 132140 (2022).
  267. Y. N. Wang, N. Zhang, H. Wu, Y. X. Ren, L. X. Yang, X. Y. Wang, Y. Z. Wu, Y. T. Liu, R. Zhao, and Z. Y. Jiang, Exfoliation-free layered double hydroxides laminates intercalated with amino acids for enhanced CO2 separation of mixed matrix membrane, J. Membr. Sci., 618, 118691 (2021).
  268. Y. T. Liu, H. Wu, L. F. Min, S. Q. Song, L. X. Yang, Y. X. Ren, Y. Z. Wu, R. Zhao, H. J. Wang, and Z. Y. Jiang, 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture, J. Membr. Sci., 598, 117663 (2020).
  269. N. Zhang, H. Wu, F. C. Li, S. Y. Dong, L. X. Yang, Y. X. Ren, Y. Z. Wu, X. Y. Wu, Z. Y. Jiang, and X. Z. Cao, Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation, J. Membr. Sci., 567, 272-280 (2018). https://doi.org/10.1016/j.memsci.2018.09.044
  270. W. J. Zheng, J. B. Yu, Z. Y. Hu, X. H. Ruan, X. C. Li, Y. Dai, and G. H. He, 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture, J. Membr. Sci., 653, 120542 (2022).
  271. H. Yang, S. Y. Liang, P. Zhang, X. J. Zhang, P. Lu, Y. Liu, X. Z. Cao, Y. S. Li, and Q. Wang, Improved CO2 separation performance of mixed matrix membranes via expanded layer double hydroxides and methanol post-treatment, J. Membr. Sci., 670, 121345 (2023).
  272. N. Y. Huang, C. C. Wang, and C. Y. Chen, Ethylene vinyl acetate copolymer/Mg-Al-layered double hydroxide nanocomposite membranes applied in CO2/N2 gas separation, Polym. Compos., 42, 4065-4072 (2021). https://doi.org/10.1002/pc.26117
  273. N. Choudhary, M. A. Islam, J. H. Kim, T. J. Ko, A. Schropp, L. Hurtado, D. Weitzman, L. Zhai, and Y. Jung, Two-dimensional transition metal dichalcogenide hybrid materials for energy applications, Nano Today, 19, 16-40 (2018). https://doi.org/10.1016/j.nantod.2018.02.007
  274. D. Wang, Z. G. Wang, L. Wang, L. Hu, and J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale, 7, 17649-17652 (2015). https://doi.org/10.1039/C5NR06321C
  275. H. T. Wang, H. T. Yuan, S. S. Hong, Y. B. Li, and Y. Cui, Physical and chemical tuning of two-dimensional transition metal dichalcogenides, Chem. Soc. Rev., 44, 2664-2680 (2015). https://doi.org/10.1039/C4CS00287C
  276. L. W. Sun, Y. L. Ying, H. B. Huang, Z. G. Song, Y. Y. Mao, Z. P. Xu, and X. S. Peng, Ultrafast molecule separation through layered WS2 nanosheet membranes, ACS Nano, 8, 6304-6311 (2014). https://doi.org/10.1021/nn501786m
  277. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2, 17033 (2017).
  278. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699-712 (2012). https://doi.org/10.1038/nnano.2012.193
  279. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263-275 (2013). https://doi.org/10.1038/nchem.1589
  280. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102-1120 (2014). https://doi.org/10.1021/nn500064s
  281. G. H. Lee, Y. J. Yu, X. Cui, N. Petrone, C. H. Lee, M. S. Choi, D. Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, ACS Nano, 7, 7931-7936 (2013). https://doi.org/10.1021/nn402954e
  282. B. Ahmed, D. H. Anjum, M. N. Hedhili, and H. N. Alshareef, Mechanistic insight into the stability of HfO2-coated MoS2 nanosheet anodes for sodium ion batteries, Small, 11, 4341-4350 (2015). https://doi.org/10.1002/smll.201500919
  283. G. P. Liu, W. Q. Jin, and N. P. Xu, Two-dimensional-material membranes: A new family of high-performance separation membranes, Angew. Chem. Int. Ed., 55, 13384-13397 (2016). https://doi.org/10.1002/anie.201600438
  284. M. M. Deng, K. Kwac, M. Li, Y. Jung, and H. G. Park, Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide, Nano Lett., 17, 2342-2348 (2017). https://doi.org/10.1021/acs.nanolett.6b05238
  285. Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320-2325 (2012). https://doi.org/10.1002/adma.201104798
  286. K. K. Liu, W. J. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Su, C. S. Chang, H. Li, Y. M. Shi, H. Zhang, C. S. Lai, and L. J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Lett., 12, 1538-1544 (2012). https://doi.org/10.1021/nl2043612
  287. Y. J. Shen, H. X. Wang, X. Zhang, and Y. T. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS Appl. Mater. Interfaces, 8, 23371-23378 (2016). https://doi.org/10.1021/acsami.6b07153
  288. Y. C. Liu, C. Y. Chen, G. S. Lin, C. H. Chen, K. C. W. Wu, C. H. Lin, and K. L. Tung, Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement, J. Membr. Sci., 582, 358-366 (2019). https://doi.org/10.1016/j.memsci.2019.04.025
  289. N. F. Ishak, N. H. Othman, N. Jamil, N. H. Alias, F. Marpani, M. Z. Shahruddin, L. W. Jye, and A. F. Ismail, Fabrication of PES MMMs with improved separation performances using two-dimensional rGO/ZIF-8 and MoS2/ZIF-8 nanofillers, Pertani. J. Sci. Technol., 31, 2473-2485 (2023). https://doi.org/10.47836/pjst.31.5.23