과제정보
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1C1C1013172, RS-2023-00259994, and RS-2023-00217317).
참고문헌
- M. I. F. Zainuddin, and A. L. Ahmad, Mixed-matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture, J. CO2 Util., 62, 102094 (2022).
- D. M. D'Alessandro, B. Smit, and J. R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082 (2010). https://doi.org/10.1002/anie.201000431
- P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, and T. E. Muller, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci., 5, 7281-7305 (2012). https://doi.org/10.1039/c2ee03403d
- B. Marzeion, G. Kaser, F. Maussion, and N. Champollion, Limited influence of climate change mitigation on short-term glacier mass loss, Nat. Clim. Change, 8, 305-308 (2018). https://doi.org/10.1038/s41558-018-0093-1
- Y. Z. Ghouali, M. Belmokaddem, M. A. Sahraoui, and M. S. Guellil, Factors affecting CO2 emissions in the BRICS countries: A Panel Data Analysis, Proc. Econ. Financ., 26, 114-125 (2015). https://doi.org/10.1016/S2212-5671(15)00890-4
- D. X. Yang, Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lu, First global carbon dioxide maps produced from tansat measurements, Adv. Atmos. Sci., 35, 621-623 (2018). https://doi.org/10.1007/s00376-018-7312-6
- A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359, 115-125 (2010). https://doi.org/10.1016/j.memsci.2009.11.040
- Y. X. Chen, and W. S. W. Ho, High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas, J. Membr. Sci., 514, 376-384 (2016). https://doi.org/10.1016/j.memsci.2016.05.005
- J. H. Gao, Y. Song, C. Y. Jia, L. Y. Sun, Y. Wang, Y. X. Wang, M. J. Kipper, L. J. Huang, and J. G. Tang, A comprehensive review of recent developments and challenges for gas separation membranes based on two-dimensional materials, Flatchem, 43, 100594 (2024).
- M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol., 188, 431-450 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
- T. Li, Y. C. Pan, K. V. Peinemann, and Z. P. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425, 235-242 (2013).
- C. F. Zhang, Y. Y. Wu, Y. Zhang, Y. X. Bai, J. Gu, and Y. P. Sun, Poly(ether-b-amide)/ethylene glycol monophenyl ether gel membrane with superior CO2/N2 separation performance fabricated by thermally induced phase separation method, J. Membr. Sci., 508, 136-145 (2016). https://doi.org/10.1016/j.memsci.2016.02.030
- G. Xu, F. F. Liang, Y. P. Yang, Y. Hu, K. Zhang, and W. Y. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies, 7, 3484-3502 (2014). https://doi.org/10.3390/en7053484
- G. Xu, L. Li, Y. P. Yang, L. H. Tian, T. Liu, and K. Zhang, A novel CO2 cryogenic liquefaction and separation system, Energy, 42, 522-529 (2012). https://doi.org/10.1016/j.energy.2012.02.048
- S. Sridhar, B. Smitha, and T. M. Aminabhavi, Separation of carbon dioxide from natural gas mixtures through polymeric membranes - A review, Sep. Purif. Rev., 36, 113-174 (2007). https://doi.org/10.1080/15422110601165967
- N. Y. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, Advances in high permeability polymeric membrane materials for CO2 separations, Energy Environ. Sci., 5, 7306-7322 (2012). https://doi.org/10.1039/C1EE02668B
- J. Y. Xu, H. Y. Wu, Z. Wang, Z. H. Qiao, S. Zhao, and J. X. Wang, Recent advances on the membrane processes for CO2 separation, Chin. J. Chem. Eng., 26, 2280-2291 (2018). https://doi.org/10.1016/j.cjche.2018.08.020
- S. Roussanaly, and R. Anantharaman, Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources, Chem. Eng. J., 327, 618-628 (2017). https://doi.org/10.1016/j.cej.2017.06.082
- M. Pera-Titus, Porous inorganic membranes for CO2 capture: present and prospects, Chem. Rev., 114, 1413-1492 (2014). https://doi.org/10.1021/cr400237k
- S. F. Wang, X. Q. Li, H. Wu, Z. Z. Tian, Q. P. Xin, G. W. He, D. D. Peng, S. L. Chen, Y. Yin, Z. Y. Jiang, and M. D. Guiver,Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci., 9, 1863-1890 (2016). https://doi.org/10.1039/C6EE00811A
- X. C. Yang, W. J. Zheng, Y. Xi, W. X. Guan, X. M. Yan, X. H. Ruan, C. H. Ma, Y. Dai, and G. H. He, Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation, J. Membr. Sci., 624, 119046 (2021).
- Z. G. Wang, H. T. Ren, S. X. Zhang, F. Zhang, and J. Jin, Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation, J. Mater. Chem. A., 5, 10968-10977 (2017). https://doi.org/10.1039/C7TA01773A
- Z. K. Li, Y. Y. Wei, X. Gao, L. Ding, Z. Lu, J. J. Deng, X. F. Yang, J. Caro, and H. H. Wang, Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets, Angew. Chem. Int. Ed., 59, 9751-9756 (2020). https://doi.org/10.1002/anie.202002935
- M. Kalaj, K. C. Bentz, S. Ayala, J. M. Palomba, K. S. Barcus, Y. Katayama, and S. M. Cohen, MOF-polymer hybrid materials: from simple composites to tailored architectures, Chem. Rev., 120, 8267-8302 (2020). https://doi.org/10.1021/acs.chemrev.9b00575
- Z. G. Wang, H. T. Ren, S. X. Zhang, F. Zhang, and J. Jin, Carbon molecular sieve membranes derived from troger's base-based microporous polyimide for gas separation, ChemSusChem, 11, 916-923 (2018). https://doi.org/10.1002/cssc.201702243
- Y. H. Chu, D. Yancey, L. R. Xu, M. Martinez, M. Brayden, and W. Koros, Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations, J. Membr. Sci., 548, 609-620 (2018). https://doi.org/10.1016/j.memsci.2017.11.052
- B. Gye, I. Kammakakam, H. You, S. Nam, and T.-H. Kim, PEG-imidazolium-incorporated polyimides as high-performance CO2-selective polymer membranes: The effects of PEG-imidazolium content, Sep. Purif. Technol., 179, 283-290 (2017). https://doi.org/10.1016/j.seppur.2017.02.020
- I. Hossain, S. Y. Nam, C. Rizzuto, G. Barbieri, E. Tocci, and T.-H. Kim, PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances, J. Membr. Sci., 574, 270-281 (2019). https://doi.org/10.1016/j.memsci.2018.12.084
- H. Y. Hwang, S. Y. Nam, H. C. Koh, S. Y. Ha, G. Barbieri, and E. Drioli, The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation, J. Ind. Eng. Chem, 18, 205-211 (2012). https://doi.org/10.1016/j.jiec.2011.11.021
- I. Kammakakam, H. W. Kim, S. Y. Nam, H. B. Park, and T.-H. Kim, Alkyl imidazolium-functionalized cardo-based poly (ether ketone) s as novel polymer membranes for O2/N2 and CO2/N2 separations, Polymer, 54, 3534-3541 (2013). https://doi.org/10.1016/j.polymer.2013.05.006
- I. Kammakakam, A. H. Rao, H. W. Yoon, S. Y. Nam, H. B. Park, and T.-H. Kim, An imidazolium-based ionene blended with crosslinked PEO as a novel polymer membrane for selective CO2 separation, Macromol. Res., 22, 907-916 (2014). https://doi.org/10.1007/s13233-014-2125-7
- I. Kammakakam, H. W. Yoon, S. Y. Nam, H. B. Park, and T.-H. Kim, Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation, J. Membr. Sci., 487, 90-98 (2015). https://doi.org/10.1016/j.memsci.2015.03.053
- V. Vijayakumar, J. H. Kim, and S. Y. Nam, Piperidinium functionalized poly (2, 6 dimethyl 1, 4 phenylene oxide) based polyionic liquid/ionic liquid (PIL/IL) composites for CO2 separation, J. Ind. Eng. Chem, 99, 81-89 (2021). https://doi.org/10.1016/j.jiec.2021.04.013
- Y. Y. Dai, Z. H. Niu, Y. Y. Wang, S. Y. Zhong, P. Mu, and J. Li, Recent advances and prospect of emerging microporous membranes for high-performance CO2 capture, Sep. Purif. Technol., 318, 123992 (2023).
- L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- V. T. Hoang and S. Kaliaguine, Predictive models for mixed-matrix membrane performance: A review, Chem. Rev., 113, 4980-5028 (2013). https://doi.org/10.1021/cr3003888
- M. H. Huang, Z. G. Wang, and J. Jin, Two-dimensional microporous material-based mixed matrix membranes for gas separation, Chem. Asian J., 15, 2303-2315 (2020). https://doi.org/10.1002/asia.202000053
- Y. Y. Dai, Z. H. Niu, W. J. Luo, Y. Y. Wang, P. Mu, and J. Li, A review on the recent advances in composite membranes for CO2 capture processes, Sep. Purif. Technol., 307, 122752 (2023).
- Y. Zhang, S. Zhang, J. Gao, and T. S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci., 515, 230-237 (2016). https://doi.org/10.1016/j.memsci.2016.05.035
- A. Gugliuzza, A. Politano, and E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology, Curr. Opin. Chem. Eng., 16, 78-85 (2017). https://doi.org/10.1016/j.coche.2017.03.003
- T. S. Yang, H. Lin, K. P. Loh, and B. H. Jia, Fundamental Transport Mechanisms and Advancements of Graphene Oxide Membranes for Molecular Separation, Chem. Mater., 31, 1829-1846 (2019). https://doi.org/10.1021/acs.chemmater.8b03820
- M. M. Chen, F. Soyekwo, Q. G. Zhang, C. Hu, A. M. Zhu, and Q. L. Liu, Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation, J. Ind. Eng. Chem, 63, 296-302 (2018). https://doi.org/10.1016/j.jiec.2018.02.030
- N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis, Zeolite membranes - A review and comparison with MOFs, Chem. Soc. Rev., 44, 7128-7154 (2015). https://doi.org/10.1039/C5CS00292C
- J. Jimmy, and B. Kandasubramanian, Mxene functionalized polymer composites: Synthesis and applications, Eur. Polym. J., 122, 109367 (2020).
- J. Yang, W. Z. Bao, P. Jaumaux, S. T. Zhang, C. Y. Wang, and G. X. Wang, MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors, Adv. Mater. Interfaces, 6, 1802004 (2019).
- H. L. Wang, S. F. He, X. D. Qin, C. E. Li, and T. Li, Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes, J. Am. Chem. Soc., 140, 17203-17210 (2018). https://doi.org/10.1021/jacs.8b10138
- J. H. Yan, Y. W. Sun, T. T. Ji, C. H. Zhang, L. L. Liu, and Y. Liu, Room-temperature synthesis of defect-engineered ZirconiumMOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source, J. Membr. Sci., 653, 120496 (2022).
- Q. Q. Hou, S. Zhou, Y. Y. Wei, J. Caro, and H. H. Wang, Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation, J. Am. Chem. Soc., 142, 9582-9586 (2020).
- B. H. Monjezi, K. Kutonova, M. Tsotsalas, S. Henke, and A. Knebel, Current trends in metal-organic and covalent organic framework membrane materials, Angew. Chem. Int. Ed., 60, 15153-15164 (2021). https://doi.org/10.1002/anie.202015790
- M. Shan, B. Seoane, E. Rozhko, A. Dikhtiarenko, G. Clet, F. Kapteijn, and J. Gascon, Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 Separation, Chem. Eur. J., 22, 14467-14470 (2016). https://doi.org/10.1002/chem.201602999
- P. Niu, L. L. Zhang, G. Liu, and H. M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22, 4763-4770 (2012). https://doi.org/10.1002/adfm.201200922
- X. X. Guo, F. Z. Zhang, D. G. Evans, and X. Duan, Layered double hydroxide films: synthesis, properties and applications, Chem. Commun., 46, 5197-5210 (2010). https://doi.org/10.1039/c0cc00313a
- Y. Zhang, M. Zhao, X. Li, Q. Xin, X. Ding, L. Zhao, H. Ye, L. Lin, H. Li, and Y. Zhang, Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure, J. Ind. Eng. Chem, 125, 200-210 (2023). https://doi.org/10.1016/j.jiec.2023.05.029
- A. R. Kamble, C. M. Patel, and Z. V. P. Murthy, A review on the recent advances in mixed matrix membranes for gas separation processes, Renew. Sustain. Energy Rev., 145, 111062 (2021).
- M. Asghari, S. Saadatmandi, and M. Afsari, Graphene oxide and its derivatives for gas separation membranes, ChemBioEng Rev., 8, 490-516 (2021). https://doi.org/10.1002/cben.202000038
- B. Li, H. M. Wen, Y. Yu, Y. Cui, W. Zhou, B. Chen, and G. Qian, Nanospace within metal-organic frameworks for gas storage and separation, Mater. Today Nano, 2, 21-49 (2018). https://doi.org/10.1016/j.mtnano.2018.09.003
- K. Duan, J. Wang, Y. T. Zhang, and J. D. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, J. Membr. Sci., 572, 588-595 (2019). https://doi.org/10.1016/j.memsci.2018.11.054
- J. Shen, G. Z. Liu, Y. F. Ji, Q. Liu, L. Cheng, K. C. Guan, M. C. Zhang, G. P. Liu, J. Xiong, J. Yang, and W. Q. Jin, 2D MXene nanofilms with tunable gas transport channels, Adv. Funct. Mater., 28, 1801151 (2018).
- Y. Wang, G. Q. Tan, M. Y. Dang, S. H. Dong, Y. Liu, T. Liu, H. J. Ren, A. Xia, and L. Lv, Study on surface modification of g-C3N4 photocatalyst, J. Alloys Compd., 908, 164507 (2022).
- P. Lu, Y. Liu, T. T. Zhou, Q. Wang, and Y. S. Li, Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations, J. Membr. Sci., 567, 89-103 (2018). https://doi.org/10.1016/j.memsci.2018.09.041
- M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, and R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature, 461, 246-249 (2009). https://doi.org/10.1038/nature08288
- Y. Peng, Y. S. Li, Y. J. Ban, and W. S. Yang, Two-dimensional metal-organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed., 56, 9757-9761 (2017). https://doi.org/10.1002/anie.201703959
- Y. Peng, Y. S. Li, Y. J. Ban, H. Jin, W. M. Jiao, X. L. Liu, and W. S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 346, 1356-1359 (2014). https://doi.org/10.1126/science.1254227
- J. A. Foster, S. Henke, A. Schneemann, R. A. Fischer, and A. K. Cheetham, Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets, Chem. Commun., 52, 10474-10477 (2016). https://doi.org/10.1039/C6CC05154E
- A. Gallego, C. Hermosa, O. Castillo, I. Berlanga, C. J. Gomez-Garcia, E. Mateo-Marti, J. I. Martinez, F. Flores, C. Gomez-Navarro, J. Gomez-Herrero, S. Delgado, and F. Zamora, Solvent-induced delamination of a multifunctional two dimensional coordination polymer, Adv. Mater., 25, 2141-2146 (2013). https://doi.org/10.1002/adma.201204676
- Y. J. Ding, Y. P. Chen, X. L. Zhang, L. Chen, Z. H. Dong, H. L. Jiang, H. X. Xu, and H. C. Zhou, Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent, J. Am. Chem. Soc., 139, 9136-9139 (2017). https://doi.org/10.1021/jacs.7b04829
- K. Varoon, X. Y. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C. Y. Sung, M. Cococcioni, L. F. Francis, A. V. McCormick, K. A. Mkhoyan, and M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science, 334, 72-75 (2011). https://doi.org/10.1126/science.1208891
- S. Yang, W. X. Niu, A. L. Wang, Z. X. Fan, B. Chen, C. L. Tan, Q. P. Lu, and H. Zhang, Ultrathin Two-Dimensional organic-inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability, Angew. Chem. Int. Ed., 56, 4252-4255 (2017). https://doi.org/10.1002/anie.201701134
- S. Alam, M. A. Chowdhury, A. Shahid, R. Alam, and A. Rahim, Synthesis of emerging two-dimensional (2D) materials-Advances, challenges and prospects, Flatchem, 30, 100305 (2021).
- T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. L. I. Xamena, and J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater., 14, 48-55 (2015). https://doi.org/10.1038/nmat4113
- L. Ding, Y. Y. Wei, L. B. Li, T. Zhang, H. H. Wang, J. Xue, L. X. Ding, S. Q. Wang, J. Caro, and Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun., 9, 155 (2018).
- M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb Carbon: A review of graphene, Chem. Rev., 110, 132-145 (2010). https://doi.org/10.1021/cr900070d
- K. H. Thebo, X. T. Qian, Q. Zhang, L. Chen, H. M. Cheng, and W. C. Ren, Highly stable graphene-oxide-based membranes with superior permeability, Nat. Commun., 9, 1486 (2018).
- K. H. Thebo, X. T. Qian, Q. W. Wei, Q. Zhang, H. M. Cheng, and W. C. Ren, Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation, J. Mater. Sci. Technol., 34, 1481-1486 (2018). https://doi.org/10.1016/j.jmst.2018.05.008
- J. Shen, G. P. Liu, K. Huang, W. Q. Jin, K. R. Lee, and N. P. Xu, Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture, Angew. Chem. Int. Ed., 54, 578-582 (2015). https://doi.org/10.1002/anie.201409563
- L. Huang, M. Zhang, C. Li, and G. Q. Shi, Graphene-based membranes for molecular separation, J. Phys. Chem. Lett., 6, 2806-2815 (2015). https://doi.org/10.1021/acs.jpclett.5b00914
- G. P. Liu, W. Q. Jin, and N. P. Xu, Graphene-based membranes, Chem. Soc. Rev., 44, 5016-5030 (2015). https://doi.org/10.1039/C4CS00423J
- H. Li, Z. N. Song, X. J. Zhang, Y. Huang, S. G. Li, Y. T. Mao, H. J. Ploehn, Y. Bao, and M. Yu, Ultrathin, Molecular-sieving graphene oxide membranes for selective hydrogen separation, Science, 342, 95-98 (2013). https://doi.org/10.1126/science.1236686
- D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 448, 457-460 (2007). https://doi.org/10.1038/nature06016
- S. S. Chen, L. Brown, M. Levendorf, W. W. Cai, S. Y. Ju, J. Edgeworth, X. S. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Y. Kang, J. Park, and R. S. Ruoff, Oxidation resistance of graphene-coated Cu and Cu/Ni alloy, ACS Nano, 5, 1321-1327 (2011). https://doi.org/10.1021/nn103028d
- C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
- Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 10, 424-428 (2011). https://doi.org/10.1038/nmat3001
- H. Huang, W. Chen, S. Chen, and A. T. S. Wee, Bottom-up growth of epitaxial graphene on 6H-SiC(0001), ACS Nano, 2, 2513-2518 (2008). https://doi.org/10.1021/nn800711v
- J. Lee, and N. R. Aluru, Water-solubility-driven separation of gases using graphene membrane, J. Membr. Sci., 428, 546-553 (2013). https://doi.org/10.1016/j.memsci.2012.11.006
- S. P. Koenig, L. D. Wang, J. Pellegrino, and J. S. Bunch, Selective molecular sieving through porous graphene, Nat. Nanotechnol., 7, 728-732 (2012). https://doi.org/10.1038/nnano.2012.162
- G. W. He, S. Q. Huang, L. F. Villalobos, J. Zhao, M. Mensi, E. Oveisi, M. Rezaei, and K. V. Agrawal, High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target, Energy Environ. Sci., 12, 3305-3312 (2019). https://doi.org/10.1039/C9EE01238A
- Z. Q. Tian, S. M. Mahurin, S. Dai, and D. E. Jiang, Ion-gated gas separation through porous graphene, Nano Lett., 17, 1802-1807 (2017). https://doi.org/10.1021/acs.nanolett.6b05121
- W. Guo, S. M. Mahurin, R. R. Unocic, H. M. Luo, and S. Dai, Broadening the gas separation utility of monolayer nanoporous graphene membranes by an ionic liquid gating, Nano Lett., 20, 7995-8000 (2020). https://doi.org/10.1021/acs.nanolett.0c02860
- T. Wang, L. Zhao, J. N. Shen, L. G. Wu, and B. Van der Bruggen, Enhanced performance of polyurethane hybrid membranes for CO2 separation by incorporating graphene oxide: the relationship between membrane performance and morphology of graphene oxide, Environ. Sci. Technol., 49, 8004-8011 (2015). https://doi.org/10.1021/acs.est.5b00138
- X. Q. Li, Y. D. Cheng, H. Y. Zhang, S. F. Wang, Z. Y. Jiang, R. L. Guo, and H. Wu, Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes, ACS Appl. Mater. Interfaces, 7, 5528-5537 (2015). https://doi.org/10.1021/acsami.5b00106
- S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X. Cao, M. D. Guiver, and Z. Jiang, A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture, Energy Environ. Sci., 9, 3107-3112 (2016). https://doi.org/10.1039/C6EE01984F
- H. Li, X. X. Ding, Y. T. Zhang, and J. D. Liu, Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation, J. Membr. Sci., 543, 58-68 (2017). https://doi.org/10.1016/j.memsci.2017.08.046
- D. C. Wang, D. D. Yao, Y. D. Wang, F. Wang, Y. Y. Xin, S. Song, Z. L. Zhang, F. F. Su, and Y. P. Zheng, Carbon nanotubes and graphene oxide-based solvent-free hybrid nanofluids functionalized mixed-matrix membranes for efficient CO2/N2 separation, Sep. Purif. Technol., 221, 421-432 (2019). https://doi.org/10.1016/j.seppur.2019.04.005
- T. C. Huang, Y. C. Liu, G. S. Lin, C. H. Lin, W. R. Liu, and K. L. Tung, Fabrication of pebax-1657-based mixed-matrix membranes incorporating N-doped few-layer graphene for carbon dioxide capture enhancement, J. Membr. Sci., 602, 117946 (2020).
- E. Yang, K. Goh, C. Y. Chuah, R. Wang, and T. H. Bae, Asymmetric mixed-matrix membranes incorporated with nitrogen-doped graphene nanosheets for highly selective gas separation, J. Membr. Sci., 615, 118293 (2020).
- J. P. Hou, X. Q. Li, R. L. Guo, J. S. Zhang, and Z. M. Wang, Mixed matrix membranes with fast and selective transport pathways for efficient CO2 separation, Nanotechnology, 29, 125706 (2018).
- K. J. Berean, J. Z. Ou, M. Nour, M. R. Field, M. M. Y. A. Alsaif, Y. C. Wang, R. Ramanathan, V. Bansal, S. Kentish, C. M. Doherty, A. J. Hill, C. McSweeney, R. B. Kaner, and K. Kalantar-zadeh, Enhanced gas permeation through graphene nanocomposites, J. Phys. Chem. C, 119, 13700-13712 (2015). https://doi.org/10.1021/acs.jpcc.5b02995
- F. U. Nigiz, Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved separation of CO2, Polym. Bull., 77, 2405-2422 (2020). https://doi.org/10.1007/s00289-019-02851-7
- R. Rea, S. Ligi, M. Christian, V. Morandi, M. G. Baschetti, and M. G. De Angelis, Permeability and selectivity of PPO/graphene composites as mixed matrix membranes for CO2 capture and gas separation, Polymers-Basel, 10, 129 (2018).
- F. Pazani, and A. Aroujalian, Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers, Polym. Test., 81, 106264 (2020).
- J. M. Luque-Alled, A. W. Ameen, M. Alberto, M. Tamaddondar, A. B. Foster, P. M. Budd, A. Vijayaraghavan, and P. Gorgojo, Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives, J. Membr. Sci., 623, 118902 (2021).
- T. Hou, L. Shu, K. C. Guo, X. F. Zhang, S. Zhou, M. He, and J. F. Yao, Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation, Cellulose, 27, 3277-3286 (2020). https://doi.org/10.1007/s10570-019-02962-4
- D. D. Peng, S. F. Wang, Z. Z. Tian, X. Y. Wu, Y. Z. Wu, H. Wu, Q. P. Xin, J. F. Chen, X. Z. Cao, and Z. Y. Jiang, Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation, J. Membr. Sci., 522, 351-362 (2017). https://doi.org/10.1016/j.memsci.2016.09.040
- J. Shen, M. C. Zhang, G. P. Liu, K. C. Guan, and W. Q. Jin, Size Effects of graphene oxide on mixed matrix membranes for CO2 separation, AlChE J., 62, 2843-2852 (2016). https://doi.org/10.1002/aic.15260
- E. A. Feijani, A. Tavassoli, H. Mahdavi, and H. Molavi, Effective gas separation through graphene oxide containing mixed matrix membranes, J. Appl. Polym. Sci., 135, 46271 (2018).
- S. Quan, S. W. Li, Y. C. Xiao, and L. Shao, CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture, Int. J. Greenhouse Gas Control., 56, 22-29 (2017). https://doi.org/10.1016/j.ijggc.2016.11.010
- R. A. Roslan, W. J. Lau, G. S. Lai, A. K. Zulhairun, Y. F. Yeong, A. F. Ismail, and T. Matsuura, Impacts of multilayer hybrid coating on PSF hollow fiber membrane for enhanced gas separation, Membranes, 10, 335 (2020).
- F. Shi, J. X. Sun, J. T. Wang, M. Liu, Z. K. Yan, B. Zhu, Y. F. Li, and X. Z. Cao, MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation, J. Membr. Sci., 620, 118850 (2021).
- M. M. Lichaei, F. Pazani, A. Aroujalian, and D. Rodrigue, Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on PEBAX and graphene oxide, Process Saf. Environ. Prot., 163, 36-47 (2022). https://doi.org/10.1016/j.psep.2022.05.024
- S. A. Mohammed, A. M. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W. J. Lau, N. Yusof, W. N. W. Salleh, and A. F. Ismail, CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane, Sep. Purif. Technol., 223, 142-153 (2019). https://doi.org/10.1016/j.seppur.2019.04.061
- B. S. Ge, T. Wang, H. X. Sun, W. Gao, and H. R. Zhao, Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation, Polym. Adv. Technol., 29, 1334-1343 (2018). https://doi.org/10.1002/pat.4245
- R. R. He, S. Z. Cong, J. Wang, J. D. Liu, and Y. T. Zhang, Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture, ACS Appl. Mater. Interfaces, 11, 4338-4344 (2019). https://doi.org/10.1021/acsami.8b17599
- Y. Dai, X. H. Ruan, Z. J. Yan, K. Yang, M. Yu, H. Li, W. Zhao, and G. H. He, Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture, Sep. Purif. Technol., 166, 171-180 (2016). https://doi.org/10.1016/j.seppur.2016.04.038
- Q. P. Xin, F. X. Ma, L. Zhang, S. F. Wang, Y. F. Li, H. Ye, X. L. Ding, L. G. Lin, Y. Z. Zhang, and X. Z. Cao, Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation, J. Membr. Sci., 586, 23-33 (2019). https://doi.org/10.1016/j.memsci.2019.05.050
- M. Alberto, R. Bhavsar, J. M. Luque-Alled, A. Vijayaraghavan, P. M. Budd, and P. Gorgojo, Impeded physical aging in PIM-1 membranes containing graphene-like fillers, J. Membr. Sci., 563, 513-520 (2018). https://doi.org/10.1016/j.memsci.2018.06.026
- J. Y. Chen, K. Shen, and Y. W. Li, Greening the processes of metal-organic framework synthesis and their use in sustainable catalysis, ChemSusChem, 10, 3165-3187 (2017). https://doi.org/10.1002/cssc.201700748
- M. Zhang, L. Ma, L. L. Wan, Y. W. Sun, and Y. Liu, Insights into the use of metal-organic framework as high-performance anticorrosion coatings, ACS Appl. Mater. Interfaces, 10, 2259-2263 (2018). https://doi.org/10.1021/acsami.7b18713
- Y. R. Lee, J. Kim, and W. S. Ahn, Synthesis of metal-organic frameworks: A mini review, Korean J. Chem. Eng., 30, 1667-1680 (2013). https://doi.org/10.1007/s11814-013-0140-6
- V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, Metal-organic frameworks: structure, properties, methods of synthesis and characterization, Russ. Chem. Rev., 85, 280-307 (2016). https://doi.org/10.1070/RCR4554
- M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and M. Khatami, A review on metal-organic frameworks: Synthesis and applications, Trends Anal. Chem., 118, 401-425 (2019). https://doi.org/10.1016/j.trac.2019.06.007
- V. R. Remya, and M. Kurian, Synthesis and catalytic applications of metal-organic frameworks: a review on recent literature, Int. Nano Lett., 9, 17-29 (2019). https://doi.org/10.1007/s40089-018-0255-1
- B. S. Ge, Y. Y. Xu, H. R. Zhao, H. X. Sun, Y. L. Guo, and W. G. Wang, High performance gas separation mixed matrix membrane fabricated by incorporation of functionalized submicrometer-sized metal-organic framework, Materials, 11, 1421 (2018).
- S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, and D. Quemener, MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties, J. Membr. Sci., 492, 21-31 (2015). https://doi.org/10.1016/j.memsci.2015.05.015
- G. X. Dong, H. Y. Li, and V. K. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A, 1, 4610-4630 (2013). https://doi.org/10.1039/c3ta00927k
- D. Bastani, N. Esmaeili, and M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem., 19, 375-393 (2013). https://doi.org/10.1016/j.jiec.2012.09.019
- Z. X. Zhao, X. L. Ma, A. Kasik, Z. Li, and Y. S. Lin, Gas separation properties of metal organic framework (MOF-5) membranes, Ind. Eng. Chem. Res., 52, 1102-1108 (2013). https://doi.org/10.1021/ie202777q
- H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li, and H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today, 21, 108-121 (2018). https://doi.org/10.1016/j.mattod.2017.07.006
- M. M. H. S. Buddin, and A. L. Ahmad, A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation, J. CO2 Util., 51, 101616 (2021).
- N. S. Bobbitt, A. S. Rosen, and R. Q. Snurr, Topological effects on separation of alkane isomers in metal-organic frameworks, Fluid Phase Equilib., 519, 112642 (2020).
- Q. P. Xin, L. Gao, F. X. Ma, S. F. Wang, G. Y. Xuan, X. H. Ma, M. T. Wei, L. Zhang, and Y. Z. Zhang, Preparation of mixed matrix membrane with high efficiency SO2 separation performance by photosensitive modification and enhanced adsorption of metal-organic framework, J. Mater. Sci., 58, 6185-6202 (2023). https://doi.org/10.1007/s10853-023-08369-8
- X. Gong, Y. J. Wang, and T. R. Kuang, ZIF-8-based membranes for carbon dioxide capture and separation, ACS Sustain. Chem. Eng., 5, 11204-11214 (2017). https://doi.org/10.1021/acssuschemeng.7b03613
- R. Castro-Munoz, O. de la Iglesia, V. Fila, C. Tellez, and J. Coronas, Pervaporation-assisted esterification reactions by means of mixed matrix membranes, Ind. Eng. Chem. Res., 57, 15998-16011 (2018). https://doi.org/10.1021/acs.iecr.8b01564
- S. H. Yuan, A. P. Isfahani, T. Yamamoto, A. Muchtar, C. Y. Wu, G. J. Huang, Y. C. You, E. Sivaniah, B. K. Chang, and B. Ghalei, Nanosized core-shell zeolitic imidazolate frameworks-based membranes for gas separation, Small Methods, 4, 2000021 (2020).
- K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A., 103, 10186-10191 (2006). https://doi.org/10.1073/pnas.0602439103
- V. Nafisi, and M. B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
- N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali, and T. Matsuura, Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation, RSC Adv., 5, 30206-30215 (2015). https://doi.org/10.1039/C5RA00567A
- H. B. T. Jeazet, S. Sorribas, J. M. Roman-Marin, B. Zornoza, C. Tellez, J. Coronas, and C. Janiak, Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8, Eur. J. Inorg. Chem., 2016, 4363-4367 (2016). https://doi.org/10.1002/ejic.201600190
- J. A. Thompson, J. T. Vaughn, N. A. Brunelli, W. J. Koros, C. W. Jones, and S. Nair, Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas, Micropor. Mesopor. Mater., 192, 43-51 (2014). https://doi.org/10.1016/j.micromeso.2013.06.036
- W. S. Chi, S. Hwang, S. J. Lee, S. Park, Y. S. Bae, D. Y. Ryu, J. H. Kim, and J. Kim, Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture, J. Membr. Sci., 495, 479-488 (2015). https://doi.org/10.1016/j.memsci.2015.08.016
- Y. J. Ban, Z. J. Li, Y. S. Li, Y. Peng, H. Jin, W. M. Jiao, A. Guo, P. Wang, Q. Y. Yang, C. L. Zhong, and W. S. Yang, Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture, Angew. Chem. Int. Ed., 54, 15483-15487 (2015). https://doi.org/10.1002/anie.201505508
- Y. J. Ban, Y. S. Li, Y. Peng, H. Jin, W. M. Jiao, X. L. Liu, and W. S. Yang, Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties, Chem. Eur. J., 20, 11402-11409 (2014). https://doi.org/10.1002/chem.201402287
- T. H. Bae, J. S. Lee, W. L. Qiu, W. J. Koros, C. W. Jones, and S. Nair, A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals, Angew. Chem. Int. Ed., 49, 9863-9866 (2010). https://doi.org/10.1002/anie.201006141
- S. Japip, Y. C. Xiao, and T. S. Chung, Particle-size effects on gas transport properties of 6FDA-durene/ZIF-71 mixed matrix membranes, Ind. Eng. Chem. Res., 55, 9507-9517 (2016). https://doi.org/10.1021/acs.iecr.6b02811
- M. Yahia, Q. N. P. Le, N. Ismail, M. Essalhi, O. Sundman, A. Rahimpour, M. M. Dal-Cin, and N. Tavajohi, Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation, Micropor. Mesopor. Mater., 312, 110761 (2021).
- N. H. Suhaimi, Y. F. Yeong, C. W. M. Ch'ng, and N. Jusoh, Tailoring CO2/CH4 Separation performance of mixed matrix membranes by using ZIF-8 particles functionalized with different amine groups, Polymers-Basel, 11, 2042 (2019).
- Y. H. Zhang, Y. P. Tong, X. Y. Li, S. J. Guo, H. L. Zhang, X. Chen, K. Cai, L. H. Cheng, and W. W. He, Pebax mixed-matrix membrane with highly dispersed ZIF-8@CNTs to enhance CO2/N2 separation, ACS Omega, 6, 18559-18568 (2021). https://doi.org/10.1021/acsomega.1c00058
- J. W. Yuan, H. P. Zhu, J. J. Sun, Y. Y. Mao, G. P. Liu, and W. Q. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture, ACS Appl. Mater. Interfaces, 9, 38575-38583 (2017). https://doi.org/10.1021/acsami.7b12507
- O. G. Nik, X. Y. Chen, and S. Kaliaguine, Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci., 413, 48-61 (2012).
- X. Y. Chen, H. Vinh-Thang, D. Rodrigue, and S. Kaliaguine, Amine-functionalized MIL-53 metal-organic framework in polyimide mixed matrix membranes for CO2/CH4 Separation, Ind. Eng. Chem. Res., 51, 6895-6906 (2012). https://doi.org/10.1021/ie3004336
- D. T. C. Nguyen, H. T. N. Le, T. S. Do, V. T. Pham, D. L. Tran, V. T. T. Ho, T. V. Tran, D. C. Nguyen, T. D. Nguyen, L. G. Bach, H. K. P. Ha, and V. T. Doan, Metal-organic framework MIL-53(Fe) as an adsorbent for ibuprofen drug removal from aqueous solutions: response surface modeling and optimization, J. Chem., 2019, 5602957 (2019).
- J. O. Hsieh, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, MIL-53 frameworks in mixed-matrix membranes, Micropor. Mesopor. Mater., 196, 165-174 (2014). https://doi.org/10.1016/j.micromeso.2014.05.006
- F. Dorosti, M. Omidkhah, and R. Abedini, Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chem. Eng. Res. Des., 92, 2439-2448 (2014). https://doi.org/10.1016/j.cherd.2014.02.018
- N. V. Maksimchuk, O. V. Zalomaeva, I. Y. Skobelev, K. A. Kovalenko, V. P. Fedin, and O. A. Kholdeeva, Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts, Proc. R. Soc. A, 468, 2017-2034 (2012). https://doi.org/10.1098/rspa.2012.0072
- R. Abedini, M. Omidkhah, and F. Dorosti, Highly permeable poly(4-methyl-1-pentyne)/NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation, RSC Adv., 4, 36522-36537 (2014). https://doi.org/10.1039/C4RA07030E
- M. Naseri, S. F. Mousavi, T. Mohammadi, and O. Bakhtiari, Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes, J. Ind. Eng. Chem, 29, 249-256 (2015). https://doi.org/10.1016/j.jiec.2015.04.007
- A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. Le Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, and J. Gascon, Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance, Adv. Funct. Mater., 26, 3154-3163 (2016). https://doi.org/10.1002/adfm.201505352
- T. Rodenas, M. van Dalen, E. Garcia-Perez, P. Serra-Crespo, B. Zornoza, F. Kapteijn, and J. Gascon, Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI, Adv. Funct. Mater., 24, 249-256 (2014). https://doi.org/10.1002/adfm.201203462
- E. A. Feijani, H. Mandavi, and A. Tavasoli, Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications, Chem. Eng. Res. Des., 96, 87-102 (2015). https://doi.org/10.1016/j.cherd.2015.02.009
- X. Y. Dong, Q. Liu, and A. S. Huang, Highly permselective MIL-68(Al)/matrimid mixed matrix membranes for CO2/CH4 separation, J. Appl. Polym. Sci., 133, 43485 (2016).
- C. F. Song, R. Li, Z. C. Fan, Q. L. Liu, B. Zhang, and Y. Kitamura, CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation, Sep. Purif. Technol., 238, 116500 (2020).
- M. W. Anjum, B. Bueken, D. De Vos, and I. F. J. Vankelecom, MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N2, J. Membr. Sci., 502, 21-28 (2016). https://doi.org/10.1016/j.memsci.2015.12.022
- K. Pirzadeh, K. Esfandiari, A. A. Ghoreyshi, and M. Rahimnejad, CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study, Korean J. Chem. Eng., 37, 513-524 (2020). https://doi.org/10.1007/s11814-019-0433-5
- G. E. Cmarik, M. Kim, S. M. Cohen, and K. S. Walton, Tuning the adsorption properties of UiO-66 via ligand functionalization, Langmuir, 28, 15606-15613 (2012). https://doi.org/10.1021/la3035352
- H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their essential effects on gas adsorption, J. Am. Chem. Soc., 135, 10525-10532 (2013). https://doi.org/10.1021/ja404514r
- S. Biswas, and P. Van der Voort, A General strategy for the synthesis of functionalised UiO-66 Frameworks: Characterisation, stability and CO2 adsorption properties, Eur. J. Inorg. Chem., 2013, 2154-2160 (2013). https://doi.org/10.1002/ejic.201201228
- R. Rong, Y. W. Sun, T. T. Ji, and Y. Liu, Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via solvothermal, J. Membr. Sci., 610, 118275 (2020).
- J. Shen, G. P. Liu, K. Huang, Q. Q. Li, K. C. Guan, Y. K. Li, and W. Q. Jin, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, J. Membr. Sci., 513, 155-165 (2016). https://doi.org/10.1016/j.memsci.2016.04.045
- Q. H. Qian, A. X. Wu, W. S. Chi, P. A. Asinger, S. Lin, A. Hypsher, and Z. P. Smith, Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility, ACS Appl. Mater. Interfaces, 11, 31257-31269 (2019). https://doi.org/10.1021/acsami.9b07500
- Z. G. Wang, Y. Y. Tian, W. X. Fang, B. B. Shrestha, M. H. Huang, and J. Jin, Constructing strong interfacial interactions under mild conditions in MOF-incorporated mixed matrix membranes for gas separation, ACS Appl. Mater. Interfaces, 13, 3166-3174 (2021). https://doi.org/10.1021/acsami.0c19554
- C. Y. Chuah, J. Lee, J. H. Song, and T. H. Bae, CO2/N2 Separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities, Membranes, 10, 154 (2020).
- M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, and I. F. J. Vankelecom, Modulated UiO-66-based mixed-matrix membranes for CO2 separation, ACS Appl. Mater. Interfaces, 7, 25193-25201 (2015). https://doi.org/10.1021/acsami.5b08964
- C. Y. Chuah, S. A. S. C. Samarasinghe, W. Li, K. Goh, and T. H. Bae, Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation, Membranes, 10, 74 (2020).
- C. Casado-Coterillo, A. Fernandez-Barquin, B. Zornoza, C. Tellez, J. Coronas, and A. Irabien, Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation, RSC Adv., 5, 102350-102361 (2015). https://doi.org/10.1039/C5RA19331A
- C. Y. Chuah, W. Li, S. A. S. C. Samarasinghe, G. S. M. D. P. Sethunga, and T. H. Bae, Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals, Micropor. Mesopor. Mater., 290, 109680 (2019).
- X. Y. Wang, Z. Zhang, W. Q. Huang, X. F. Li, and B. Y. Yan, Preparation of highly water stable HKUST-1@Pyr composites for excellent CO2 capture capability and efficient separation of CO2/N2, Inorg. Chem. Commun., 156, 111252 (2023).
- M. Arjmandi, and M. Pakizeh, Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment, J. Ind. Eng. Chem., 20, 3857-3868 (2014). https://doi.org/10.1016/j.jiec.2013.12.091
- E. V. Perez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, J. Membr. Sci., 328, 165-173 (2009). https://doi.org/10.1016/j.memsci.2008.12.006
- W. B. Chen, Z. G. Zhang, L. Hou, C. C. Yang, H. C. Shen, K. Yang, and Z. Wang, Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance, Sep. Purif. Technol., 250, 117198 (2020).
- N. Azizi, and M. R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Pet. Sci. Technol., 36, 993-1000 (2018). https://doi.org/10.1080/10916466.2018.1458120
- J. Gao, H. Z. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. S. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Micropor. Mesopor. Mater., 297, 110030 (2020).
- Y. N. Wang, Y. X. Ren, H. Wu, X. Y. Wu, H. Yang, L. X. Yang, X. Y. Wang, Y. Z. Wu, Y. T. Liu, and Z. Y. Jiang, Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading, J. Membr. Sci., 602, 117970 (2020).
- S. Meshkat, S. Kaliaguine, and D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 235, 116150 (2020).
- S. Zhao, X. C. Cao, Z. J. Ma, Z. Wang, Z. H. Qiao, J. X. Wang, and S. C. Wang, Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal-organic frameworks, Ind. Eng. Chem. Res., 54, 5139-5148 (2015). https://doi.org/10.1021/ie504786x
- M. Barooah, and B. Mandal, Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane, J. Membr. Sci., 572, 198-209 (2019). https://doi.org/10.1016/j.memsci.2018.11.001
- M. Etxeberria-Benavides, T. Johnson, S. Cao, B. Zornoza, J. Coronas, J. Sanchez-Lainez, A. Sabetghadam, X. L. Liu, E. Andres-Garcia, F. Kapteijn, J. Gascon, and O. David, PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure, Sep. Purif. Technol., 237, 116347 (2020).
- Z. D. Dai, V. Loining, J. Deng, L. Ansaloni, and L. Y. Deng, Poly(1-trimethylsilyl-1-propyne)-based hybrid membranes: effects of various nanofillers and feed gas humidity on CO2 permeation, Membranes, 8, 76 (2018).
- J. Deng, Z. D. Dai, J. W. Hou, and L. Y. Deng, Morphologically tunable MOF nanosheets in mixed matrix membranes for CO2 separation, Chem. Mater., 32, 4174-4184 (2020). https://doi.org/10.1021/acs.chemmater.0c00020
- X. Y. Wu, W. Liu, H. Wu, X. Zong, L. X. Yang, Y. Z. Wu, Y. X. Ren, C. Y. Shi, S. F. Wang, and Z. Y. Jiang, Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance, J. Membr. Sci., 548, 309-318 (2018). https://doi.org/10.1016/j.memsci.2017.11.038
- A. Ehsani, and M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng., 66, 414-423 (2016). https://doi.org/10.1016/j.jtice.2016.07.005
- M. S. Boroglu, and A. B. Yumru, Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation, Sep. Purif. Technol., 173, 269-279 (2017). https://doi.org/10.1016/j.seppur.2016.09.037
- Q. N. Zhang, S. J. Luo, J. R. Weidman, and R. L. Guo, Preparation and gas separation performance of mixed-matrix membranes based on triptycene-containing polyimide and zeolite imidazole framework (ZIF-90), Polymer, 131, 209-216 (2017). https://doi.org/10.1016/j.polymer.2017.10.040
- Y. X. Sun, C. X. Geng, Z. Q. Zhang, Z. H. Qiao, and C. L. Zhong, Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation, J. Membr. Sci., 661, 120928 (2022).
- H. Rajati, A. H. Navarchian, and S. Tangestaninejad, Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation, Chem. Eng. Sci., 185, 92-104 (2018). https://doi.org/10.1016/j.ces.2018.04.006
- I. C. Ferreira, T. J. Ferreira, A. D. S. Barbosa, B. de Castro, R. P. P. L. Ribeiro, J. P. B. Mota, V. D. Alves, L. Cunha-Silva, I. A. A. C. Esteves, and L. A. Neves, Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 276, 119303 (2021).
- S. Meshkat, S. Kaliaguine, and D. Rodrigue, Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation, Sep. Purif. Technol., 200, 177-190 (2018). https://doi.org/10.1016/j.seppur.2018.02.038
- M. Z. Ahmad, M. Navarro, M. Lhotka, B. Zornoza, C. Tellez, W. M. de Vos, N. E. Benes, N. M. Konnertz, T. Visser, R. Semino, G. Maurin, V. Fila, and J. Coronas, Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives, J. Membr. Sci., 558, 64-77 (2018). https://doi.org/10.1016/j.memsci.2018.04.040
- Y. Z. Jiang, C. Y. Liu, J. Caro, and A. S. Huang, A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance, Micropor. Mesopor. Mater., 274, 203-211 (2019). https://doi.org/10.1016/j.micromeso.2018.08.003
- Y. S. Zhang, H. G. Jia, Q. J. Wang, W. Q. Ma, G. X. Yang, S. P. Xu, S. B. Li, G. M. Su, Y. Q. Qu, M. Y. Zhang, and P. F. Jiang, Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation, Membranes, 12, 34 (2022).
- R. Thur, N. Van Velthoven, S. Slootmaekers, J. Didden, R. Verbeke, S. Smolders, M. Dickmann, W. Egger, D. De Vos, and I. F. J. Vankelecom, Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation, J. Membr. Sci., 576, 78-87 (2019). https://doi.org/10.1016/j.memsci.2019.01.016
- R. J. Ling, L. Ge, H. Diao, V. Rudolph, and Z. H. Zhu, Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation, ACS Appl. Mater. Interfaces, 8, 32041-32049 (2016). https://doi.org/10.1021/acsami.6b11074
- B. Zornoza, B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, Combination of MOFs and zeolites for mixed-matrix membranes, ChemPhysChem, 12, 2781-2785 (2011). https://doi.org/10.1002/cphc.201100583
- N. Liu, J. Cheng, W. Hou, C. Yang, X. Yang, and J. H. Zhou, Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes, Sep. Purif. Technol., 282, 120007 (2022).
- D. C. Wang, Y. P. Ying, Y. P. Zheng, Y. C. Pu, Z. Q. Yang, and D. Zhao, Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation, J. Membr. Sci. Lett., 2, 100017 (2022).
- C. Wang, J. Wu, P. F. Cheng, L. P. Xu, and S. Zhang, Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture, J. Membr. Sci., 685, 121950 (2023).
- X. Feng, Z. K. Qin, Q. X. Lai, Z. Y. Zhang, Z. W. Shao, W. L. Tang, W. J. Wu, Z. D. Dai, and C. Liu, Mixed-matrix membranes based on novel hydroxamate metal-organic frameworks with two-dimensional layers for CO2/N2 separation, Sep. Purif. Technol., 305, 122476 (2023).
- S. Majumdar, B. Tokay, V. Martin-Gil, J. Campbell, R. CastroMunoz, M. Z. Ahmad, and V. Fila, Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation, Sep. Purif. Technol., 238, 116411 (2020).
- E. Roh, I. Subiyanto, W. Choi, Y. C. Park, C. H. Cho, and H. Kim, CO2/N2 and O2/N2 separation using mixed-matrix membranes with MOF-74 nanocrystals synthesized via microwave reactions, Bull. Korean Chem. Soc., 42, 459-462 (2021). https://doi.org/10.1002/bkcs.12217
- M. Y. Fang, C. Montoro, and M. Semsarilar, Metal and covalent organic frameworks for membrane applications, Membranes, 10, 107 (2020).
- T. Rasheed, S. Khan, T. Ahmad, and N. Ullah, Covalent organic frameworks-based membranes as promising modalities from preparation to separation applications: An overview, Chem. Rec., 22, e202200062 (2022).
- M. G. Mohamed, A. F. M. EL-Mahdy, M. G. Kotp, and S. W. Kuo, Advances in porous organic polymers: syntheses, structures, and diverse applications, Mater. Adv., 3, 707-733 (2022). https://doi.org/10.1039/D1MA00771H
- Y. T. Liu, H. Wu, S. Q. Wu, S. Q. Song, Z. Y. Guo, Y. X. Ren, R. Zhao, L. X. Yang, Y. Z. Wu, and Z. Y. Jiang, Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation, J. Membr. Sci., 618, 118693 (2021).
- X. Zhu, C. C. Tian, C. L. Do-Thanh, and S. Dai, Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation, ChemSusChem, 10, 3304-3316 (2017). https://doi.org/10.1002/cssc.201700801
- C. C. Zou, Q. Q. Li, Y. Y. Hua, B. H. Zhou, J. G. Duan, and W. Q. Jin, Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal, ACS Appl. Mater. Interfaces., 9, 29093-29100 (2017). https://doi.org/10.1021/acsami.7b08032
- Z. X. Kang, Y. W. Peng, Y. H. Qian, D. Q. Yuan, M. A. Addicoat, T. Heine, Z. G. Hu, L. Tee, Z. G. Guo, and D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater., 28, 1277-1285 (2016). https://doi.org/10.1021/acs.chemmater.5b02902
- B. P. Biswal, H. D. Chaudhari, R. Banerjee, and U. K. Kharul, Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation, Chem. Eur. J., 22, 4695-4699 (2016). https://doi.org/10.1002/chem.201504836
- R. L. Thankamony, X. Li, S. K. Das, M. M. Ostwal, and Z. P. Lai, Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations, J. Membr. Sci., 591, 117348 (2019).
- S. Bugel, M. Hahnel, T. Kunde, N. D. Amadeu, Y. Y. Sun, A. Spiess, T. H. Y. Beglau, B. M. Schmidt, and C. Janiak, Synthesis and characterization of a crystalline imine-based covalent organic framework with triazine node and biphenyl linker and its fluorinated derivate for CO2/CH4 separation, Materials, 15, 2807 (2022).
- G. Dai, Q. Zhang, S. Xiong, L. Deng, Z. Gao, A. Chen, X. Li, C. Pan, J. Tang, and G. Yu, Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation, J. Membr. Sci., 676, 121561 (2023).
- G. M. Jaid, A. A. Abdulrazak, H. Meskher, S. Al-Saadi, and Q. F. Alsalhy, Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) in mixed matrix membranes, Mater. Today Sustain., 25, 100672 (2024).
- Y. Q. Yang, K. Goh, P. Weerachanchai, and T. H. Bae, 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging, J. Membr. Sci., 574, 235-242 (2019). https://doi.org/10.1016/j.memsci.2018.12.078
- J. Y. Liu, M. Q. Liu, and J. J. Lu, Fabrication of polyimide and covalent organic frameworks mixed matrix membranes by in situ polymerization for preliminary exploration of CO2/CH4 separation, High Perform. Polym., 31, 671-678 (2019). https://doi.org/10.1177/0954008318783045
- X. Y. Wu, Z. Z. Tian, S. F. Wang, D. D. Peng, L. X. Yang, Y. Z. Wu, Q. P. Xin, H. Wu, and Z. Y. Jiang, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation, J. Membr. Sci., 528, 273-283 (2017). https://doi.org/10.1016/j.memsci.2017.01.042
- Y. D. Cheng, L. Z. Zhai, Y. P. Ying, Y. X. Wang, G. L. Liu, J. Q. Dong, D. Z. L. Ng, S. A. Khan, and D. Zhao, Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers, J. Mater. Chem. A, 7, 4549-4560 (2019). https://doi.org/10.1039/C8TA10333J
- Y. D. Cheng, Y. P. Ying, L. Z. Zhai, G. L. Liu, J. Q. Dong, Y. X. Wang, M. P. Christopher, S. C. Long, Y. X. Wang, and D. Zhao, Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation, J. Membr. Sci., 573, 97-106 (2019). https://doi.org/10.1016/j.memsci.2018.11.060
- R. Zhao, H. Wu, L. X. Yang, Y. X. Ren, Y. T. Liu, Z. H. Qu, Y. Z. Wu, L. Cao, Z. Chen, and Z. Y. Jiang, Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading, J. Membr. Sci., 600, 117841 (2020).
- X. C. Cao, Z. Wang, Z. H. Qao, S. Zhao, and J. X. Wang, Penetrated COF channels: Amino environment and suitable size for CO2 preferential adsorption and transport in mixed matrix membranes, ACS Appl. Mater. Interfaces, 11, 5306-5315 (2019). https://doi.org/10.1021/acsami.8b16877
- H. F. Jiang, Z. Y. Guo, H. J. Wang, X. Liu, Y. X. Ren, T. Huang, J. D. Xue, H. Wu, J. F. Zhang, Y. Yin, Z. Y. Jiang, and M. D. Guiver, Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading, J. Membr. Sci., 640, 119803 (2021).
- M. D. Wang, K. D. Quan, X. H. Zheng, Y. Cao, X. Y. Cui, M. Xue, and F. S. Pan, Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation, Sep. Purif. Technol., 237, 116457 (2020).
- X. Q. Chang, H. Y. Guo, Q. S. Chang, Z. H. Tian, Y. W. Zhang, D. Y. Li, J. Wang, and Y. T. Zhang, Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation, J. Membr. Sci., 686, 122017 (2023).
- Y. T. Liu, L. Y. Chen, L. F. Yang, T. H. Lan, H. Wang, C. H. Hu, X. Han, Q. X. Liu, J. F. Chen, Z. M. Feng, X. L. Cui, Q. R. Fang, H. L. Wang, L. B. Li, Y. W. Li, H. B. Xing, S. H. Yang, D. Zhao, and J. P. Li, Porous framework materials for energy & environment relevant applications: A systematic review, Green Energy Environ., 9, 217-310 (2024). https://doi.org/10.1016/j.gee.2022.12.010
- Y. Zhang, M. F. Tian, Z. Majeed, Y. X. Xie, K. L. Zheng, Z. D. Luo, C. Y. Li, and C. J. Zhao, Application of hydrogen-bonded organic frameworks in environmental remediation: Recent advances and future trends, Separations, 10, 196 (2023).
- R. B. Lin, and B. L. Chen, Hydrogen-bonded organic frameworks: Chemistry and functions, Chem, 8, 2114-2135 (2022). https://doi.org/10.1016/j.chempr.2022.06.015
- I. Hisaki, Hydrogen-bonded porous frameworks constructed by rigid π-conjugated molecules with carboxy groups, J. Incl. Phenom. Macrocycl. Chem., 96, 215-231 (2020). https://doi.org/10.1007/s10847-019-00972-0
- Y. H. Wang, Y. X. Ren, Y. Cao, X. Liang, G. W. He, H. Z. Ma, H. L. Dong, X. Fang, F. S. Pan, and Z. Y. Jiang, Engineering HOF-based mixed-matrix membranes for efficient CO2 separation, Nano-Micro Lett., 15, 50 (2023).
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248-4253 (2011). https://doi.org/10.1002/adma.201102306
- I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water puri fication: Progress, challenges and prospects, Chem. Eng. J., 388, 124340 (2020).
- M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502-1505 (2013). https://doi.org/10.1126/science.1241488
- L. Ding, Y. Y. Wei, Y. J. Wang, H. B. Chen, J. Caro, and H. H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks, Stacks, Angew. Chem. Int. Ed., 56, 1825-1829 (2017). https://doi.org/10.1002/anie.201609306
- F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137-1140 (2016). https://doi.org/10.1126/science.aag2421
- W. J. Luo, Z. H. Niu, P. Mu, and J. Li, Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2, Macromolecules, 55, 9851-9859 (2022). https://doi.org/10.1021/acs.macromol.2c01532
- D. Magne, V. Mauchamp, S. Celerier, P. Chartier, and T. Cabioc'h, Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups, Phys. Chem. Chem. Phys., 18, 30946-30953 (2016). https://doi.org/10.1039/C6CP05985F
- A. Lipatov, H. D. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers, Sci. Adv., 4, eaat0491 (2018).
- R. Castro-Munoz, MXene: A two-dimensional material in selective water separation via pervaporation, Arab. J. Chem., 15, 103524 (2022).
- A. A. Shamsabadi, A. P. Isfahani, S. K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah, and M. Soroush, Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets, ACS Appl. Mater. Interfaces, 12, 3984-3992 (2020). https://doi.org/10.1021/acsami.9b19960
- W. Guan, X. Yang, C. Dong, X. Yan, W. Zheng, Y. Xi, X. Ruan, Y. Dai, and G. He, Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes, J. Appl. Polym. Sci., 138, 49895 (2021).
- G. Z. Liu, L. Cheng, G. N. Chen, F. Liang, G. P. Liu, and W. Q. Jin, Pebax-based membrane filled with two-dimensional MXene nanosheets for efficient CO2 capture, Chem. Asian J., 15, 2364-2370 (2020). https://doi.org/10.1002/asia.201901433
- C. Regmi, J. Azadmanjiri, V. Mishra, Z. Sofer, S. Ashtiani, and K. Friess, Cellulose triacetate-based mixed-matrix membranes with mxene 2D filler-CO2/CH4 separation performance and comparison with TiO2-based 1D and 0D fillers, Membranes, 12, 917 (2022).
- H. Q. Lin, K. Gong, P. Hykys, D. K. Chen, W. Ying, Z. Sofer, Y. G. Yan, Z. Li, and X. S. Peng, Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation, Chem. Eng. J., 405, 126961 (2021).
- Y. M. Zhang, K. Sheng, Z. Wang, W. J. Wu, B. H. Yin, J. Y. Zhu, and Y. T. Zhang, Rational design of MXene hollow fiber membranes for gas separations, Nano Lett., 23, 2710-2718 (2023). https://doi.org/10.1021/acs.nanolett.3c00004
- I. Ahmad, H. Jee, S. Song, M. Kim, T. Eisa, J. Jang, K.-J. Chae, C. Chuah, and E. Yang, Delaminated or multilayer Ti3C2TX-MXene-incorporated polydimethylsiloxane mixed-matrix membrane for enhancing CO2/N2 separation, Mater. Today Sustain., 23, 100410 (2023).
- C. Zhou, R. Shi, L. Shang, L. Z. Wu, C. H. Tung, and T. R. Zhang, Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production, Nano Res., 11, 3462-3468 (2018). https://doi.org/10.1007/s12274-018-2003-2
- Y. J. Ji, H. L. Dong, H. P. Lin, L. L. Zhang, T. J. Hou, and Y. Y. Li, Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane, RSC Adv., 6, 52377-52383 (2016). https://doi.org/10.1039/C6RA06425F
- J. G. Cui, D. W. Qi, and X. Wang, Research on the techniques of ultrasound-assisted liquid-phase peeling, thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets, Ultrason. Sonochem., 48, 181-187 (2018). https://doi.org/10.1016/j.ultsonch.2018.05.020
- Y. Wang, X. C. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed., 51, 68-89 (2012). https://doi.org/10.1002/anie.201101182
- D. J. Martin, P. J. T. Reardon, S. J. A. Moniz, and J. W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, J. Am. Chem. Soc., 136, 12568-12571 (2014). https://doi.org/10.1021/ja506386e
- J. Liu, Y. Yu, R. L. Qi, C. Y. Cao, X. Y. Liu, Y. J. Zheng, and W. G. Song, Enhanced electron separation on in-plane benzene-ring doped g-C3N4 nanosheets for visible light photocatalytic hydrogen evolution, Appl. Catal. B: Environ., 244, 459-464 (2019). https://doi.org/10.1016/j.apcatb.2018.11.070
- A. Jomekian, B. Bazooyar, J. Esmaeilzadeh, and R. M. Behbahani, Highly CO2 selective chitosan/g-C3N4/ZIF-8 membrane on polyethersulfone microporous substrate, Sep. Purif. Technol., 236, 126961 (2020).
- L. Cheng, Y. Y. Song, H. M. Chen, G. Z. Liu, G. P. Liu, and W. Q. Jin, g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property, Sep. Purif. Technol., 250, 117200 (2020).
- Z. H. Niu, W. J. Luo, P. Mu, and J. Li, Nanoconfined CO2-philic ionic liquid in laminated g-C3N4 membrane for the highly efficient separation of CO2, Sep. Purif. Technol., 297, 121513 (2022).
- Y. S. Zhou, Y. Zhang, J. Xue, R. Wang, Z. J. Yin, L. Ding, and H. H. Wang, Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification, Chem. Eng. J., 420, 129574 (2021).
- B. K. Voon, H. S. Lau, C. Z. Liang, and W. F. Yong, Functionalized two-dimensional g-C3N4 nanosheets in PIM-1 mixed matrix membranes for gas separation, Sep. Purif. Technol., 296, 121354 (2022).
- M. Soto-Herranz, M. Sanchez-Bascones, A. Hernandez-Gimenez, J. I. Calvo-Diez, J. Martin-Gill, and P. Martin-Ramos, Effects of protonation ,hydroxylamination, and hydrazination of g-C3N4 on the performance of Matrimid®/g-C3N4 Membranes, Nanomaterials, 8, 1010 (2018).
- M. Asim, A. Khan, A. Helal, W. Alshitari, U. A. Akbar, and M. Y. Khan, A 2D graphitic-polytriaminopyrimidine (g-PTAP)/poly (ether-block-amide) mixed matrix membrane for CO2 separation, Chem. Asian J., 16, 1839-1848 (2021). https://doi.org/10.1002/asia.202100390
- F. Guo, D. S. Li, R. Ding, J. M. Gao, X. H. Ruan, X. B. Jiang, G. H. He, and W. Xiao, Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation, Sep. Purif. Technol., 280, 119803 (2022).
- C. L. Tan, X. H. Cao, X. J. Wu, Q. Y. He, J. Yang, X. Zhang, J. Z. Chen, W. Zhao, S. K. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117, 6225-6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- M. Sajid, S. M. S. Jillani, N. Baig, and K. Alhooshani, Layered double hydroxide-modified membranes for water treatment: Recent advances and prospects, Chemosphere, 287, 132140 (2022).
- Y. N. Wang, N. Zhang, H. Wu, Y. X. Ren, L. X. Yang, X. Y. Wang, Y. Z. Wu, Y. T. Liu, R. Zhao, and Z. Y. Jiang, Exfoliation-free layered double hydroxides laminates intercalated with amino acids for enhanced CO2 separation of mixed matrix membrane, J. Membr. Sci., 618, 118691 (2021).
- Y. T. Liu, H. Wu, L. F. Min, S. Q. Song, L. X. Yang, Y. X. Ren, Y. Z. Wu, R. Zhao, H. J. Wang, and Z. Y. Jiang, 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture, J. Membr. Sci., 598, 117663 (2020).
- N. Zhang, H. Wu, F. C. Li, S. Y. Dong, L. X. Yang, Y. X. Ren, Y. Z. Wu, X. Y. Wu, Z. Y. Jiang, and X. Z. Cao, Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation, J. Membr. Sci., 567, 272-280 (2018). https://doi.org/10.1016/j.memsci.2018.09.044
- W. J. Zheng, J. B. Yu, Z. Y. Hu, X. H. Ruan, X. C. Li, Y. Dai, and G. H. He, 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture, J. Membr. Sci., 653, 120542 (2022).
- H. Yang, S. Y. Liang, P. Zhang, X. J. Zhang, P. Lu, Y. Liu, X. Z. Cao, Y. S. Li, and Q. Wang, Improved CO2 separation performance of mixed matrix membranes via expanded layer double hydroxides and methanol post-treatment, J. Membr. Sci., 670, 121345 (2023).
- N. Y. Huang, C. C. Wang, and C. Y. Chen, Ethylene vinyl acetate copolymer/Mg-Al-layered double hydroxide nanocomposite membranes applied in CO2/N2 gas separation, Polym. Compos., 42, 4065-4072 (2021). https://doi.org/10.1002/pc.26117
- N. Choudhary, M. A. Islam, J. H. Kim, T. J. Ko, A. Schropp, L. Hurtado, D. Weitzman, L. Zhai, and Y. Jung, Two-dimensional transition metal dichalcogenide hybrid materials for energy applications, Nano Today, 19, 16-40 (2018). https://doi.org/10.1016/j.nantod.2018.02.007
- D. Wang, Z. G. Wang, L. Wang, L. Hu, and J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale, 7, 17649-17652 (2015). https://doi.org/10.1039/C5NR06321C
- H. T. Wang, H. T. Yuan, S. S. Hong, Y. B. Li, and Y. Cui, Physical and chemical tuning of two-dimensional transition metal dichalcogenides, Chem. Soc. Rev., 44, 2664-2680 (2015). https://doi.org/10.1039/C4CS00287C
- L. W. Sun, Y. L. Ying, H. B. Huang, Z. G. Song, Y. Y. Mao, Z. P. Xu, and X. S. Peng, Ultrafast molecule separation through layered WS2 nanosheet membranes, ACS Nano, 8, 6304-6311 (2014). https://doi.org/10.1021/nn501786m
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2, 17033 (2017).
- Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699-712 (2012). https://doi.org/10.1038/nnano.2012.193
- M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263-275 (2013). https://doi.org/10.1038/nchem.1589
- D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102-1120 (2014). https://doi.org/10.1021/nn500064s
- G. H. Lee, Y. J. Yu, X. Cui, N. Petrone, C. H. Lee, M. S. Choi, D. Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, ACS Nano, 7, 7931-7936 (2013). https://doi.org/10.1021/nn402954e
- B. Ahmed, D. H. Anjum, M. N. Hedhili, and H. N. Alshareef, Mechanistic insight into the stability of HfO2-coated MoS2 nanosheet anodes for sodium ion batteries, Small, 11, 4341-4350 (2015). https://doi.org/10.1002/smll.201500919
- G. P. Liu, W. Q. Jin, and N. P. Xu, Two-dimensional-material membranes: A new family of high-performance separation membranes, Angew. Chem. Int. Ed., 55, 13384-13397 (2016). https://doi.org/10.1002/anie.201600438
- M. M. Deng, K. Kwac, M. Li, Y. Jung, and H. G. Park, Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide, Nano Lett., 17, 2342-2348 (2017). https://doi.org/10.1021/acs.nanolett.6b05238
- Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320-2325 (2012). https://doi.org/10.1002/adma.201104798
- K. K. Liu, W. J. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Su, C. S. Chang, H. Li, Y. M. Shi, H. Zhang, C. S. Lai, and L. J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Lett., 12, 1538-1544 (2012). https://doi.org/10.1021/nl2043612
- Y. J. Shen, H. X. Wang, X. Zhang, and Y. T. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS Appl. Mater. Interfaces, 8, 23371-23378 (2016). https://doi.org/10.1021/acsami.6b07153
- Y. C. Liu, C. Y. Chen, G. S. Lin, C. H. Chen, K. C. W. Wu, C. H. Lin, and K. L. Tung, Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement, J. Membr. Sci., 582, 358-366 (2019). https://doi.org/10.1016/j.memsci.2019.04.025
- N. F. Ishak, N. H. Othman, N. Jamil, N. H. Alias, F. Marpani, M. Z. Shahruddin, L. W. Jye, and A. F. Ismail, Fabrication of PES MMMs with improved separation performances using two-dimensional rGO/ZIF-8 and MoS2/ZIF-8 nanofillers, Pertani. J. Sci. Technol., 31, 2473-2485 (2023). https://doi.org/10.47836/pjst.31.5.23