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1. Introduction and Preliminaries

In [6], Henry obtained the following result about weakly singular Gronwall
type inequality.

Theorem 1.1. Let a, b, α, β be nonnegative constants with α < 1, β < 1. Sup-
pose that u ∈ L1[0, T ] satisfies

u(t) ≤ at−α + b

∫ t

0

(t− s)−βu(s)ds, a.e.t ∈ (0, T ]. (1.1)

Then there is a constant C(b, β, T ) such that

u(t) ≤ at−α

1− α
C(b, β, T ), a.e.t ∈ (0, T ]. (1.2)

Another version of a weakly singular result of Henry is given by the following
Theorem.
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Theorem 1.2 (6). Suppose β > 0, γ > 0, β + γ > 1 and a ≥ 0, b ≥ 0, u is
nonnegative and tγ−1u(t) is locally integrable on 0 ≤ t < T, and u satisfies

u(t) ≤ a+ b

∫ t

0

(t− s)β−1sγ−1u(s)ds, a.e.t ∈ [0, T ). (1.3)

Then

u(t) ≤ aEβ,γ(bΓ(β)
1

β+γ−1 t), (1.4)

where Eβ,γ(z) is given by an infinite series related to the two-parameter
Mittag-Leffler function.

Since weakly singular integral inequalities are well-known tools for proving the
existence, uniqueness and stability of integral equations and fractional differen-
tial equations, many researchers have embarked on the study of these inequalities
and derived various versions (for example, see [1−3, 5, 8−10, 12−13, 15, 17] and
the references therein). In [14],Willett studied the following inequality by using
the Minkowski inequality.

Lemma 1.3. Let 1 ≤ p < ∞, a(t) and b(t) be continuous and nonnegative
functions on [0,∞), l(t) be a nonnegative and continuous function on (0,+∞)
and l(t) ∈ L1

Loc[0,+∞).Suppose u(t) is a nonnegative continuous function on
[0,+∞) with

u(t) ≤ a(t) + b(t)(

∫ t

0

l(s)up(s)ds)
1
P , t ∈ [0,∞). (1.5)

then

u(t) ≤ a(t) + b(t)
(
∫ t

0
l(s)e(s)ap(s)ds)

1
P

1− [1− e(t)]
1
p

,

where

e(t) = exp(−
∫ t

0

l(s)bp(s)ds).

By a new method, Tao.Zhu [16] investigated the inequality (1.5) and presented
the following results.

Theorem 1.4. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and con-
tinuous functions on [0,+∞), l(t) be a nonnegative and continuous function on
(0,+∞) and t−γ l(t) ∈ Lq

Loc[0,+∞)(q > 1
β ), and u(t) be a continuous, nonnega-

tive function on [0,+∞) with

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1s−γ l(s)u(s)ds, (1.6)

then

u(t) ≤ (A(t) +B(t)

∫ t

0

L(s)A(s) exp(

∫ t

s

L(τ)B(τ)dτ)ds)
1
q , t ∈ [0,+∞), (1.7)
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where A(t) = 2q−1aq(t), B(t) = 2q−1bq(t)t
qβ−q+

p
q

(pβ−−p+1)
q
p

, L(t) = t−qγ lq(t) and

p ∈ (1,+∞) such that 1
p + 1

q = 1.

Theorem 1.5. Let β ∈ (0, 1), a(t) be a nonnegative and continuous function on
[0,+∞), l(t) be a nonnegative and continuous function on (0,+∞) and l(t) ∈
Lq
Loc[0,+∞)(q > 1

β ), and u(t) be a continuous, nonnegative function on [0,+∞)

with

u(t) ≤ a(t) + t1−β

∫ t

0

(t− s)β−1sβ−1l(s)u(s)ds, (1.8)

then

u(t) ≤ a(t) + b(t)(A(t) exp(

∫ t

0

L(s)ds))
1
q , t ∈ [0,∞). (1.9)

where b(t) = 2
1
p t

β−1+ 1
p

(pβ−p+1)
1
p
, A(t) =

∫ t

0
2q−1lq(s)aq(s)ds , L(t) = 2q−1lq(t)bq(t)

and p ∈ (1,+∞) such that 1
p + 1

q = 1.

Lemma 1.6. Let 1 ≤ p < ∞, a(t) and b(t) be continuous and nonnegative
functions on [0,∞), nonnegative function l(t) ∈ Lp

Loc[0,+∞),and u(t) be a con-
tinuous and nonnegative function with

u(t) ≤ a(t) + b(t)(

∫ t

0

lp(s)up(s)ds)
1
p ). (1.10)

Then

u(t) ≤ a(t) + b(t)(A(t) exp

∫ t

0

L(s)ds)
1
p , t ∈ [0,∞), (1.11)

where
A(t) =

∫ t

0
2p−1lp(s)ap(s)ds;

L(t) = 2p−1lp(t)bp(t).
(1.12)

In this paper, we study the following fractional integral inequality

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1s−γ l(s)f(s, u(s))ds, (1.13)

where γ > 0, β ∈ (0, 1).
We provide some generalizations concerning fractional integral inequality (1.6)

, which can be used to study properties of the solutions to the following initial
value problem: {

Dβ
r x(t) = f(t, x(t)) t ∈ (0,∞), β ∈ (0, 1)

limt→0+ t1−βx(t) = x0,
(1.14)

where Dβ
r is the Riemann–Liouville fractional derivative and the function f

satisfies certain inequalities. For example, f satisfies an inequality of the form

|f(t, x)− f(t, y)| ≤ b(t)g (|x− y|) .
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Now, we introduce notations, definitions, and several results that are utilized
throughout this paper.

Let β ∈ (0, 1), denote Cβ(0, T ] = {x : (0, T ] → R and x(t) = t−βy(t) for some
y ∈ C[0, T ]}.Let ∥ x ∥β = sup0<t⪯T t

β | x(t) |, then Cβ(0, T ] endowed with the
norm ∥ . ∥β is a Banach space. We denote Cβ(0,+∞) = {x : (0,+∞) → R
and x(t) = t−βy(t) for some y ∈ C[0,+∞)}. Lp

Loc[0,+∞)(p ≥ 1) is the space
of all real valued functions which are Lebesgue integrable over every bounded
subinterval of [0,+∞).

Definition 1.7. [11]The Riemann–Liouville fractional integral of order β ∈
(0, 1) of a function f ∈ L1[0, T ] is defined by

(Iβf)(t) =
1

Γ(β)

t∫
0

f(s)

(t− s)1−β
ds. (1.15)

Definition 1.8. [11]The Riemann–Liouville fractional derivative of order β ∈
(0, 1) of a function f where I1−βf is absolutely continuous (AC) is defined by

(Dβ
r f)(t) =

d

dt
(I1−βf)(t) =

1

Γ(1− β)

d

dt

t∫
0

f(s)

(t− s)β
ds. (1.16)

For more details about fractional calculus, we refer the reader to [11, 12] .

Definition 1.9. [4]A function w : R+ → R+ is said to belong to class F, if it
satisfies the following conditions :

w(x) > 0 is nondecreasing and continuous for x ≥ 0,

1

a
w(x) ≤ w

(x
a

)
for a > 0 .

For example, if w(x) = xp, p ≥ 1, then w(xa ) = (xa )
p ≥ xp

a = w(x)
a for

a ∈ (0, 1] .

Theorem 1.10. ([2]). Let f(t, x) be a function that is continuous on the set

B = {(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I},
where I ⊆ R denotes an unbounded interval. Suppose a function x : (0, T ] →

I is continuous and that both x(t) and f(t, x(t)) are absolutely integrable on
(0, T ] . Then x(t) satisfies the initial value problem (1.17) on (0, T ] if and only
if it satisfies the Volterra integral equation

x(t) = x0t
β−1 +

1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds. (1.17)

on (0, T ]
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Lemma 1.11. [16]Suppose f : (0, T ] × R → R is a continuous function, and
there exist nonnegative functions l(t), k(t) with tβ−1l(t) ∈ C(0, T ]∩Lq[0, T ] and
k(t) ∈ C(0, T ] ∩ Lq[0, T ](q > 1

β , β ∈ (0, 1)) such that

| f(t, x) |≤ l(t) | x | +k(t),

for all (t, x) ∈ (0, T ] × R.Then the Volterra integral equation (1.17) has at
least one solution in C1−β(0, T ].

Lemma 1.12. [4] Suppose that a ≥ 0, p ≥ q ≥ 0 and p ̸= 0, then

a
q
p ≤ q

p
ε

q−p
p a+

p− q

p
ε

q
p , (1.18)

for any ε > 0.

Lemma 1.13. [7] Let α, β, λ, and p be positive constants. Then

∫ t

0
(tα − sα)p(β−1)sp(λ−1)ds

= tθ

α β
[
p(λ−1)+1

α , p(β − 1) + 1
]

, t ∈ R+

(1.19)

where

B [ζ, η] =

∫ 1

0

sζ−1(1− s)η−1ds (ℜe ζ > 0,ℜe η > 0), (1.20)

is the well-known beta function and

θ = p [α(β − 1) + λ− 1] + 1 ≥ 0. (1.21)

2. A generalized fractionnal integral inequalities

In this section, we will now prove several results regarding the generalization
of fractional integral inequalities (1.5) and (1.6), which can be employed to
investigate the global existence of solutions of fractional differential equation
(1.14).

Theorem 2.1. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and
continuous functions on [0,+∞) with b(t) is nondecreasing; l(t) be a nonnega-
tive and continuous function on (0,+∞) and u(t) be a continuous, nonnegative
function on [0,+∞). Let f : R2

+ → R+ be a continuous function such that

0 ≤ f(t, x)− f(t, y) ≤ L(t, y)(x− y), x ≥ y ≥ 0, (2.1)

for t ∈ R+ , where L : R2
+ → R+ is a continuous function with t−γ l(t)L(t, a(t))

∈ Lq
Loc[0,+∞)(q > 1

β ).If

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1s−γ l(s)f(s, u(s))ds (2.2)
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then

u(t)

≤ a(t) + b(t)(A(t) +B(t)

∫ t

0

R(s)A(s) exp(

∫ t

s

R(τ)B(τ)dτ)ds)
1
q , t ∈ [0,+∞),

(2.3)

where A(t) = 2q−1ãq(t), B(t) = 2q−1t
qβ−q+

p
q bq(t)

(pβ−p+1)
q
p

, R(t) = t−qγrq(t), p ∈

(1,+∞) such that 1
p + 1

q = 1.

And

ã(t) =

∫ t

0

(t− s)β−1s−γ l(s)f(s, a(s))ds , r(t) = l(t)L(t, a(t)) . (2.4)

Proof. Let

z(t) =

∫ t

0

(t− s)β−1s−γ l(s)f(s, u(s))ds, (2.5)

then, we have z(0) = 0 and

u(t) ≤ a(t) + b(t)z(t). (2.6)

So it follows that

z(t) ≤
∫ t

0

(t− s)β−1s−γ l(s)f(s, a(s) + b(s)z(s))ds, (2.7)

from (2.1), we have

f(t, a(t) + b(t)z(t)) ≤ L(t, a(t))b(t)z(t) + f(t, a(t)), (2.8)

From (2.7) and (2.8), we obtain

z(t) ≤
∫ t

0

(t− s)β−1s−γ l(s)[L(s, a(s))b(s)z(s) + f(s, a(s))]ds. (2.9)

The inequality (2.9) can be reformulated as

z(t) ≤ ã(t) + b(t)

∫ t

0

(t− s)β−1s−γr(s)z(s)ds, (2.10)

where ã and r are defined as in (2.4).
By Theorem 1.4, and using (2.6) we obtain the inequality (2.3) and complete

the proof. □

Remark 2.1. Assume f(t, u(t)) = u(t), inequality(2.2)inTheorem 2.1 implies
inequality (3.1)in Theorem 3.1 in [16] .

Corollary 2.2. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and
continuous functions on [0,+∞)with b(t) is nondecreasing, l(t) be a nonnega-
tive and continuous function on (0,+∞) and u(t) be a continuous, nonnegative
function on [0,+∞).Suppose g : R+ → R+ is a differentiable increasing function
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on ]0,+∞[ with continuous non-increasing first derivative g
′
on ]0,+∞[ with

t−γ l(t)g′(a(t)) ∈ Lq
Loc[0,+∞)(q > 1

β ).If

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1s−γ l(s)g(u(s))ds,

then

u(t) ≤ a(t)+b(t)(A(t)+B(t)

∫ t

0

R(s)A(s) exp(

∫ t

s

R(τ)B(τ)dτ)ds)
1
q , t ∈ [0,+∞),

where A(t) = 2q−1ãq(t), B(t) = 2q−1t
qβ−q+

p
q bq(t)

(pβ−p+1)
q
p

, R(t) = t−qγrq(t) and

p ∈ (1,+∞) such that 1
p + 1

q = 1.

With

ã(t) =

∫ t

0

(t− s)β−1s−γ l(s)g(a(s))ds , r(t) = l(t)g′(a(t)) .

Proof. Applying the mean value Theorem for the function g, then for every
x ≥ y > 0, there exists c ∈ ] y, x[such that

g(x)− g(y) = g
′
(c)(x− y) ≤ g

′
(0)(x− y),

The rest of proof is essentially identical to the proof of Theorem 2.1. □

Corollary 2.3. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and
continuous functions on [0,+∞) with b(t) is nondecreasing,l(t) be a nonnega-
tive and continuous function on (0,+∞) and u(t) be a continuous, nonnegative

function on [0,+∞). Suppose t−γ l(t)
1+a(t) ∈ Lq

Loc[0,+∞)(q > 1
β ).If

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1s−γ l(s) ln(u(s) + 1)ds, t ∈ [0,∞),

then

u(t) ≤ a(t)+b(t)(A(t)+B(t)

∫ t

0

R(s)A(s) exp(

∫ t

s

R(τ)B(τ)dτ)ds)
1
q , t ∈ [0,+∞),

where A(t) = 2q−1ãq(t), B(t) = 2q−1t
qβ−q+

p
q bq(t)

(pβ−−p+1)
q
p

, R(t) = t−qγrq(t) and

p ∈ (1,+∞) such that 1
p + 1

q = 1.

With

ã(t) =

∫ t

0

(t− s)β−1s−γ l(s) ln(1 + a(t))ds , r(t) =
b(t) l(t)

ln(1 + a(t))
.

Theorem 2.4. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and
continuous functions on [0,+∞), l(t) be a nonnegative and continuous function
on (0,+∞) and u(t) be a continuous, nonnegative function on [0,+∞). Let
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f : R2
+ → R+ be a continuous function and ϕ : R+ → R+ be a continuous and

strictly increasing function with ϕ(0) = 0 such that

0 ≤ f(t, x)− f(t, y) ≤ L(t, y)ϕ−1(x− y), (2.11)

for t ∈ R+and x ≥ y ≥ 0, where L : R2
+ → R+ is a continuous function and

ϕ−1 is the inverse function of ϕ and

ϕ−1(x.y) ≤ ϕ−1(x)ϕ−1(y), (2.12)

for x, y ∈ R+.If t
−γ l(t) L(t, a(t)) ∈ Lq

Loc[0,+∞)(q > 1
β ) and

u(t) ≤ a(t) + b(t)ϕ(

∫ t

0

(t− s)β−1s−γ l(s)f(s, u(s))ds)), (2.13)

then

u(t)

≤ a(t) + b(t)ϕ(A(t) +B(t)

∫ t

0

K(s)A(s) exp(

∫ t

s

K(τ)B(τ)dτ)ds)
1
q , t ∈ [0,+∞),

(2.14)

where A(t) = 2q−1ãq(t), B(t) = 2q−1t
qβ−q+

p
q (ϕ−1(b(t)))q

(pβ−p+1)
q
p

, K(t) = t−qγmq(t)

and p ∈ (1,+∞) such that 1
p + 1

q = 1.

With

ã(t) =

∫ t

0

(t− s)β−1s−γ l(s)f(s, a(s))ds , m(t) = l(t)L(t, a(t)) . (2.15)

Proof. Let

z(t) =

∫ t

0

(t− s)β−1s−γ l(s)f(s, u(s))ds. (2.16)

Then z(0) = 0, and (2.13) can be written as

u(t) ≤ a(t) + b(t)ϕ(z(t)). (2.17)

It follows that

z(t) ≤
∫ t

0

(t− s)β−1s−γ l(s)f(s, a(s) + b(s)ϕ(z(s))ds, (2.18)

from (2.11) and (2.12), we observe that

f(t, a(t) + b(t)ϕ(z(t))) ≤ L(t, a(t))ϕ−1(b(t)ϕ(z(t))) + f(t, a(t))
≤ L(t, a(t))ϕ−1(b(t))z(t) + f(t, a(t)).

(2.19)

Using (2.18) and (2.19), we obtain

z(t) ≤
∫ t

0

(t− s)β−1s−γ l(s)[L(s, a(s))ϕ−1(b(s))z(s) + f(s, a(s))]ds . (2.20)
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The inequality (2.20) can be reformulated as

z(t) ≤ ã(t) + ϕ−1(b(t))

∫ t

0

(t− s)β−1s−γm(s)z(s)ds, t ∈ [0,∞), (2.21)

where ã and m are defined as in (2.15).
Applying Theorem 1.4 to (2.21) and using (2.17), we can get the desired

inequality (2.14). □

Remark 2.2. Assume f(t, u(t)) = u(t) and ϕ(x) = x, inequality (2.13) in
Theorem 2.4 implies inequality 3.1 in Theorem 3.1 in [16] .

Corollary 2.5. Let β ∈ (0, 1), a(t) be a nonnegative and continuous function
on [0,+∞), l(t) be a nonnegative and continuous function on (0,+∞). Let
f : R2

+ → R+ be a continuous function and ϕ : R+ → R+ be a continuous
and strictly increasing function with ϕ(0) = 0 satisfy (2.11) − (2.12) and u(t)
be a continuous, nonnegative function on [0,+∞).Suppose tβ−1l(t)L(t, a(t)) ∈
Lq
Loc[0,+∞)(q > 1

β ).If

u(t) ≤ a(t) + t1−βϕ(

∫ t

0

(t− s)β−1sβ−1l(s)f(s, u(s))ds). (2.22)

Then

u(t) ≤ a(t)+t1−βϕ(A(t)+B(t)

∫ t

0

K(s)A(s) exp(

∫ t

s

K(τ)B(τ)dτ)ds)
1
q , t ∈ [0,∞),

(2.23)

where A(t) = 2q−1ãq(t), B(t) = 2q−1t
qβ−q+

p
q (ϕ−1(t1−β))q

(pβ−p+1)
q
p

, and p ∈ (1,+∞)

such that 1
p + 1

q = 1.

With

ã(t) =

∫ t

0

(t− s)β−1sβ−1l(s)f(s, a(s))ds ,

K(t) = t−q(β−1)mq(t),m(t) = l(t)L(t, a(t)) . (2.24)

Theorem 2.6. Let 1 ≤ p ≤ q < ∞, a(t) and b(t) be continuous and nonnegative
functions on [0,∞), l(t) be a nonnegative and continuous function on [0,+∞).Let
f : R2

+ → R+ be a continuous function and ϕ : R+ → R+ be a continuous
and strictly increasing function with ϕ(0) = 0 satisfies (2.11) − (2.12).Suppose

l(t)L(t, p
q ε

p−q
q a(t) + q−p

q ε
p
q ) ∈ LLoc[0,+∞),and u(t) be a continuous and non-

negative function .If

uq(t) ≤ a(t) + b(t)ϕ(

∫ t

0

l(s)f(s, up(s)ds)). (2.25)
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Then

u(t) ≤ (a(t) + b(t)ϕ(ã(t) + ϕ(
p

q
ε

p−q
q b(t))

∫ t

0
k(s)e(s)ã(s)ds

1− [1− e(t)]
)

1
q , t ∈ [0,∞).

(2.26)

where ã(t) =
∫ t

0
l(s)f(s, p

q ε
p−q
q a(s) + q−p

q ε
p
q )ds , k(t) = l(t)L(t, p

q ε
p−q
q a(t) +

q−p
q ε

p
q ) and e(t) = exp(−

∫
k(s)ϕ(pq ε

p−q
q b(t))ds).

Proof. Let

z(t) =

∫ t

0

l(s)f(s, up(s)ds. (2.27)

Then z(0) = 0 and from (2.25) can be written as

up(t) ≤ (a(t) + b(t)ϕ(z(t)))
p
q . (2.28)

So it follows that

z(t) ≤
∫ t

0

l(s)f(s, (a(s) + b(s)ϕ(z(s)))
p
q )ds , (2.29)

from (1.18), (2.11) and (2.12), we have

f(t, (a(t) + b(t)ϕ(z(t)))
p
q ) ≤ L(t, p

q ε
p−q
q a(t) + q−p

q ε
p
q )ϕ−1(pq ε

p−q
q b(t)ϕ(z(t)))

+f(t, p
q ε

p−q
q a(t) + q−p

q ε
p
q ).

≤ L(t, p
q ε

p−q
q a(t) + q−p

q ε
p
q )ϕ−1(pq ε

p−q
q b(t))z(t)

+f(t, p
q ε

p−q
q a(t) + q−p

q ε
p
q ).

(2.30)
Using (2.30) and (2.29), we obtain

z(t) ≤
∫ t

0

l(s)
[
L(t,

p

q
ε

p−q
q a(t) +

q − p

q
ε

p
q )ϕ−1(

p

q
ε

p−q
q b(t))z(t)

+ f(t,
p

q
ε

p−q
q a(t) +

q − p

q
ε

p
q )
]
ds. (2.31)

The inequality (2.31) can be restated as

z(t) ≤ ã(t) + ϕ−1(
p

q
ε

p−q
q b(t))

∫ t

0

k(s)z(s)ds, t ∈ [0,∞), (2.32)

where ã and k are defined as in Theorem 2.6.
Applying Lemma 1.3 for p = 1 to inequality (2.32) and using (2.28) we get

the required inequality in (2.26). □

Remark 2.3. If f(t, u(t)) = u(t) and ϕ(x) = x
1
p , q = 1, inequality (2.25) can

be reduced to inequality (1.5) discussed by Willett in [14] .
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3. Further Results

In this section, refinements of fractional integral inequalities are presented, in
which the right-hand side contains a nonlinear fractional integral term involving
class F functions. .

Theorem 3.1. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and con-
tinuous functions on [0,+∞), such that a(t)(a(t) ̸= 0) is nondecreasing function,
l(t) be a nonnegative and continuous function on (0,+∞) with
t−γ l(t)L(t, a2(t))Lq

Loc[0,+∞)(q > 1
β ), and u(t) be a continuous, nonnegative

function on [0,+∞). Let f : R2
+ → R+ be a continuous function such that

0 ≤ f(t, x)− f(t, y) ≤ L(t, y)(x− y), x ≥ y ≥ 0, (3.1)

for t ∈ R+ , where L : R2
+ → R+ is a continuous function .If

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1s−γ l(s)f(s, u(s))ds, t ∈ [0,∞), (3.2)

then

u(t) ≤ a(t)

{
1 + b(t)(A(t) +B(t)

∫ t

0

R(s)A(s) exp(

∫ t

s

R(τ)B(τ)dτ)ds)
1
q

}
,

t ∈ [0,+∞),
(3.3)

where

A(t) = 2q−1ãq(t), B(t) = 2q−1t
qβ−q+

p
q bq(t)

(pβ−p+1)
q
p

, R(t) = t−qγrq(t), p ∈ (1,+∞) such

that 1p + 1
q = 1,

with
ã(t) =

∫ t

0
(t− s)β−1s−γ l(s) 1

a(s)f(s, a
2(s))ds ,r(t) = l(t)L(t, a2(t)) .

Proof. The inequality (3.2) can be written as :

u(t)

a(t)
≤ 1 + b(t)

∫ t

0

(t− s)β−1s−γ l(s)
f(s, a(s)u(s)a(s) )

a(s)
ds. (3.4)

Setting w(t) = u(t)
a(t) , one can reformulate (3.4) as

w(t) ≤ 1 + b(t)

∫ t

0

(t− s)β−1s−γ l(s)
f(s, a(s)w(s))

a(s)
ds.

Let g(t, w(t)) = 1
a(t)f(t, a(t)w(t)), it is easy to see that g(t, x) satisfies :

g(t, x)− g(t, y) ≤ L(t, a(t)y)(x− y), (3.5)

then

w(t) ≤ 1 + b(t)

∫ t

0

(t− s)β−1s−γ l(s)g(s, w(s))ds, (3.6)

Applying Theorem 2.1 to the inequality (3.6),we get the required inequality
in (3.3). □
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Theorem 3.2. Let a(t) and b(t) be continuous and nonnegative functions on
[0, T ) (0 < T ≤ +∞), l(t) ∈ Lq

Loc[0, T ) ∩ C[0, T [(q > 1).Let g ∈ C[0,+∞[ be a
nondecreasing, nonnegative function. and u(t) be a continuous and nonnegative
function on [0, T ) .If

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)
β−1

s−γ l(s)g (u (s)) ds. (3.7)

Then

u(t) ≤
{
Ω−1

q

[
Ωq(ã(t)) + b̃(t)

∫ t

0

lq(s)ds

]} 1
q

t ∈ [0, T1] . (3.8)

Where

ã(t) = 2q−1a(t),

b̃(t) = 2q−1(tθβ [−pγ + 1, p(β − 1) + 1])
q
p bq(t),

Ωq (υ) =
∫ υ

υ0

ds

gq

(
s

1
q

) ,
(3.9)

and T1 ∈ (0, T ) is such that Ωq(ã(t)) + b̃(t)
∫ t

0
lq(s))ds ∈ Dom(Ω−1

q ).

Proof. Let

z(t) = a(t) + b(t)

∫ t

0

(t− s)
β−1

s−γ l(s)g(u(s))ds,

then
u(t) ≤ z(t),

z(t) ≤ a(t) + b(t)
∫ t

0
(t− s)

β−1
s−γ l(s)g(z(s))ds.

(3.10)

Let 1 ≤ p < +∞, such that 1
p +

1
q = 1. Using the Hölder inequality, we obtain

from (3.10) that

z(t) ≤ a(t) + b(t)

[∫ t

0

(t− s)
p(β−1)

s−pγds

] 1
p
[∫ t

0

lq(s)g (z (s))
q
ds

] 1
q

. (3.11)

Since (A+B)
n ≤ 2n−1 (An +Bn) holds for any A ≥ 0, B ≥ 0 and using Lemma

1.13, ∫ t

0

(t− s)
p(β−1)

s−pγds = tθβ [−pγ + 1, p(β − 1) + 1] , t ∈ R+, (3.12)

we obtain from (3.11) that

zq (t) ≤ 2q−1a(t) + 2q−1(tθβ [−pγ + 1, p(β − 1) + 1])
q
p bq(t)

∫ t

0

lq(s)gq (z(s)) ds,

where θ = p [(β − 1)− γ] + 1.
Then the above inequality can be reformulated as

zq (t) ≤ ã(t) + b̃(t)

∫ t

0

lq(s)gq (z(s)) ds. (3.13)

Let t∗ ∈ [0, t] be a positive constant chosen, we get
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zq (t) ≤ ã(t∗) + b̃(t∗)

∫ t

0

lq(s)gq (z(s)) ds. (3.14)

Let G(t) be the right-hand side of the inequality (3.14) ,then z (t) ≤ G
1
q (t)

and this yields gq (z(t)) ≤ gq
(
G

1
q (t)

)
. It is clear that

G′(t)

gq
(
G

1
q (t)

) =
b̃(t∗)lq(t)gq (z(t))

gq
(
G

1
q (t)

) ,

i.e.,

d

dt

∫ G(t)

0

dσ

gq
(
σ

1
q

) ≤ b̃(t∗)lq(t),

or
d

dt
Ωq (G (t)) ≤ b̃(t∗)lq(t). (3.15)

where Ωq is defined by (3.9) .
Integrating the inequality(3.15) from 0 to t, we obtain

Ωq (z (t)
q
) ≤ Ωq(ã(t

∗)) + b̃(t∗)

∫ t

0

lq(s)ds, (3.16)

Letting t = t∗ in (3.16) and considering t∗ > 0 is arbitary, after substituting t∗

with t, we get

Ωq (z (t)
q
) ≤ Ωq(ã(t)) + b̃(t)

∫ t

0

lq(s)ds. (3.17)

Then

z(t) ≤
{
Ω−1

q

[
Ωq(ã(t)) + b̃(t)

∫ t

0

lq(s)ds

]} 1
q

. (3.18)

This completes the proof of Theorem. □

Inspired by the concept of inequality (3.7), one can derive a bound of an
fractional integral inequality in the next corollary using functions of class F
(introduced in Section 1).

Corollary 3.3. Let a(t) and b(t) be continuous and nonnegative functions on
[0, T ) (0 < T ≤ +∞), l(t) ∈ Lq

Loc[0, T )(q > 1).Let g ∈ C[0,+∞[ belongs to class
F (see Definition 1.9), and a(t) ̸= 0 be nondecreasing function in [0, X) and
u(t) be a continuous and nonnegative function on [0, T ) .If

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)
β−1

s−γ l(s)g (u (s)) ds, t ∈ [0,∞). (3.19)

Then

u(t) ≤ a(t)

{
Ω−1

q

[
Ωq(2

q−1) + b̃(t)

∫ t

0

lq(s)ds

]} 1
q

t ∈ [0, T1] . (3.20)
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where b̃(t),Ωq are defined as in Theorem 3.2.

Proof. The inequality (3.19) can be rewritten as

u(t)

a(t)
≤ 1 +

1

a(t)
b(t)

∫ t

0

(t− s)
β−1

s−γg (u (s)) ds . (3.21)

Since a(x) is nondecreasing function, we get

u(t)

a(t)
≤ 1 + b(t)

∫ t

0

1

a(s)

[
(t− s)

β−1
s−γ l(s)g (u (s))

]
ds. (3.22)

Let z(t) = u(t)
a(t) .Since g belongs to class F, one has

z(t) ≤ 1 + b(t)

∫ t

0

[
(t− s)

β−1
s−γ l(s)g (z (s))

]
ds, (3.23)

the rest of the proof is identical to the proof of the Theorem 3.2. □

4. Applications

In this section, we present an alternative condition, distinct from that de-
scribed in [16], to investigate the existence and uniqueness of solutions for the
initial value problem (1.17).

Theorem 4.1. If f : (0,+∞)× R → R is a continuous function, and

|f(t, x)− f(t, y)| ≤ l(t)g (|x− y|) , (4.1)

for all x, y ∈ R and t ∈ (0,+∞), where g is defined as in Corollary 2.2
such that g(0) = 0, l(t) ∈ C(0,+∞) ∩ Lq

Loc[0,+∞) and |f(t, 0)| ∈ Lq
Loc[0,+∞)

(q > 1
β ).Then equation (1.17)has a unique global solution on (0,+∞).

Proof. We know

|f(t, x)| ≤ |f(t, x)− f(t, 0)|+ |f(t, 0)| ≤ l(t)g(|x|) + |f(t, 0)|.
Applying the mean value Theorem for the function g, then for every |x| > 0,

there exists c ∈ ] 0, |x|[such that

g(|x|)− g(0) = g
′
(c)(|x| − 0) ≤ g

′
(0)(|x| − 0),

then
|f(t, x)| ≤ l(t)g

′
(0)|x|+ |f(t, 0)|.

By Lemma 1.11, the equation (1.17)has at least one global solution .
Now, suppose x1(t), x2(t) are two global solutions of equation (1.17). Then

| x1(t)− x2(t) | =| 1
Γ(β)

∫ t

0
(t− s)β−1(f(s, x1(s))− f(s, x2(s)))ds |

≤ 1
Γ(β)

∫ t

0
(t− s)β−1sβ−1s1−βl(s)g(| x1(s)− x2(s) |)ds.

(4.2)
Let u(t) =| x1(s)− x2(s) |, L(t) = s1−βl(s),then
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u(t) ≤ 1

Γ(β)

∫ t

0

(t− s)β−1sβ−1L(s)g(u(s))ds. (4.3)

By Corollary 2.2, we can get x1(t) = x2(t). Thus the proof is complete. □

Example 4.2. {
D

3
5
r x(t) = t

−7
12 arctan(x) + t

−1
2 ,

limt→0+ t
2
5x(t) = 1.

(4.4)

We know that

| f(t, x)− f(t, y) | =
∣∣∣t−7

12 arctan(x)− t
−7
12 arctan(y)

∣∣∣
= t

−7
12

∣∣∣∣arctan( x− y

1 + xy
)

∣∣∣∣ ≤ t
−7
12 arctan(| x− y |),

where x, y ∈ (0,+∞). Since t
−7
12 ∈ C(0,+∞)∩Lq

Loc[0,+∞) and t
−1
2 ∈ C(0,+∞)∩

Lq
Loc[0,+∞) (q > 5

3 ), then from Theorem 4.1, equation (4.4)has a unique global
solution on (0,+∞).

5. Conclusion

In this work, several new fractional integral inequalities were derived. They
can be considered as generalizations and refinements of many existing results.
These nequalities help in the investigation of qualitative properties of certain
classes of fractional equations.

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

Acknowledgments : The authors thankful to the reviewers for valuable
suggestion to improve the manuscript.

References

1. R.P. Agarwal, D. O’Regan, S. Staněk, Positive solutions for mixed problems of singular

fractional differential equations, Math. Nachr. 285 (2012), 27-41.
2. L.C. Becker, T.A. Burton, I.K. Purnaras, Complementary equations: a fractional differen-

tial equation and a Volterra integral equation, Electron. J. Qual. Theory Differ. Equ. 12

(2015), 1-24.
3. A Ayari, K Boukerrioua, Some new GronwallL-Bihari type inequalities associated with

generalized fractionnal operators and applications, Rad HAZU, Matematičke znanosti 26
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