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HAMILTONIAN PROPERTIES OF ENHANCED

HONEYCOMB NETWORKS
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Abstract. A cycle in a graph G that contains all of its vertices is said to be

the Hamiltonian cycle of that graph. A Hamiltonian graph is one that has a
Hamiltonian cycle. This article discusses how to create a new network from

an existing one, such as the Enhanced Honeycomb Network EHC(n), which

is created by adding six new edges to each layer of the Honeycomb Network
HC(n). Enhanced honeycomb networks have 9n2 + 3n− 6 edges and 6n2

vertices. For every perfect sub-Honeycombe topology, this new network

features six edge disjoint Hamiltonian cycles, which is an advantage over
Honeycomb. Its diameter is (2n+ 1), which is nearly 50% lesser than that

of the Honeycomb network. Using 3-bit grey code, we demonstrated that

the Enhanced Honeycomb Network EHC(n) is Hamiltonian.
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1. Introduction

Interconnection networks are made up of many device types and the connec-
tions between them. A network topology is a way to connect one element to
another and can take several forms depending on how it was built, including a
tree, bus, mesh, star, ring, hypercube, and tori.

Honeycomb is an arrangement that is inspired by nature has been known
before by scientists with its structural strengths and studied with them. Long
before, people only know the honeycomb pattern from bee honeycombs. After
technological inventions like microscopes, scientists found honeycomb structures
in different natural formations. For example, Robert Hook found a cork has a
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honeycomb-like cellular structure (Zhang et al, 2015) and there are many exam-
ples that have the honeycomb-like pattern in nature, such as insect eyes, marine
skeletons, snowflakes, turtle and tortoise shells as in corks. Honeycomb has a
lightweight, strong and rigid structure that scientists work on since the 20th

century (Hales, 2001). The first application of honeycomb is in 1914, Höfler and
Renyi patented the first use of honeycombs as a structural element. The use
of honeycomb has since grown year after year. Lester and Sandor J. (1985),
satellite component research (Boudjemai et al. (2012)), bioengineering (Engel-
mary et al. 2008), multiprocessor interconnection networks design (Carle et al.
(1999); Manuel et al. (2008)), station positioning for cellular phones (Nocetti et
al. (2002), and chemical engineering (Rajan et al. (2012)) are just a few fields
that use honeycomb applications.

Interconnection networks are generally represented with a graph G = (V,E)
where E is a set of edges and V is a set of nodes. A honeycomb pattern can
be used as a graph for constructing interconnection networks. In Enhanced
Honeycomb networks, each node can be labelled by using n-bit grey codes and
consecutive labels differ from each other just in one bit.

In their investigation of the Hamiltonian characteristics of honeycomb meshes
made in two different ways, Ayşe Nur Altinas Tankul et al. Using n-bit grey
code, he discovered many Hamilton pathways for Honeycomb Meshes in any di-
mension. In this study, the labelling for the Enhanced Honeycomb networks is
done using 3−bit grey coding.

Hamiltonian properties of Enhanced Honeycomb meshes are investigated here.
The Hamiltonian cycle is a path in a graph that passing once through every ver-
tex and return to the starting vertex and the Hamiltonian graph is a graph in
which a Hamiltonian cycle exists (Wilson, 1996). Hamiltonian cycles are im-
portant for the design of graphs, especially graphs with interconnection network
topologies. Hamiltonian properties of graphs have been studied before such as
on random graphs (Janson, 1994), interconnection graphs like star graph (De-
rakhshan and Hussak, 2013), hypercube graph (Karci and Selçuk, 2014 and
Selçuk and Karci, 2017) and honeycomb+e (Simon Raj and George, 2015, Sto-
jmenovic, 1997 and Dong et al., 2015).

The paper is organized as follows: Section 2 presented a Literature survey.
Algorithms for Enhanced Honeycomb Networks and variants of Honeycomb Net-
works and Enhanced Honeycomb Networks are given in section 3. Hamiltonian
properties of Enhanced Honeycomb Networks are explained in Section 4. In
section 5, we have given an algorithm to find the Hamiltonian cycle.
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2. Literature survey

Communication techniques and Honeycomb network topological features are
presented in [6]. There are many parallel architectures built from meshes, in-
cluding honeycomb and hexagonal networks. [10] discovered the fewest metric
bases for hexagonal and honeycomb networks using the duality of these networks.
For honeycomb and hexagonal networks, resolving sets and a few conditional re-
solving parameters are examined in [9]. Using n-bit grey code, we were able to
determine the Hamiltonian properties of honeycomb meshes that are created in
two distinct methods, as well as the various Hamiltonian routes for honeycomb
meshes in any dimension. We also provided an approach for labelling the nodes
of honeycomb meshes[18]. In Honeycomb networks HC(n), [7] shows that any
two vertices can be connected via a Hamiltonian path. HC(n) is a maximal
non-Hamiltonian graph as a result. We obtain a Hamiltonian cycle by joining
the beginning vertex (u) and ending vertex (v) of a Hamiltonian path in HC(n)
through an edge. However, for n ≥ 2, this new edge must cross n− 2 edges.

Figure 1. A Hamiltonian cycle in HC(3) + uv

Hamiltonian cycle in Honeycombe HC(n) + e, n = 2, 3, 4 without any edge
crossings [15].

Figure 2. A Hamiltonian cycle in HC(2) + e

This idea can be extended to n−dimensional honeycomb networks, i.e a Hamil-
tonian cycle can be drawn for n-dimensional Honeycombe (HC(n) + e). Using
symmetrical nature, we can draw 5 more similar edges in HC(n), the resulting



764 M. Somasundari, A. Rajkumar, F. Simon Raj and A. George

graph is called the Enhanced Honeycomb network.

Drawing Algorithm for Enhanced Honeycomb Networks:

Input:

Step 1: Draw the Honeycomb Network (HC(n)) of dimension n.

Step2: Select a node in the first layer (u1
1,1). Construct a path from u1

1,1(initial
node) to the boundary of the length 2n−2 in the Zigzag manner (see the figure-
5-red colour path). The terminal node is in the boundary with degree 4. Choose
the nodes u1

1,1, u
2
1,1, u

3
1,1 · · ·un

1,1 in the path which is at an even distance to the

initial node u1
1,1. Clearly, u

(n)
1,1 is in the nth layer which is at a distance of 2n− 2

from the initial node.

Step 3: Choose an adjacent node of u1
1,1 in layer 1 call it as u1

1,2. By repeat-

ing the same procedure in step 2, we get u1
1,2, u

2
1,2, u

3
1,2, . . . .., u

n
1,2 which are at

distance 2n − 2 from u1
1,2. Taking the next adjacent node in layer 1 call it as

u1
1,3. By repeating the same procedure in step 2, we get u1

1,3, u
2
1,3, u

3
1,3, . . . .., u

n
1,3

which are at distance 2n − 2 from u1
1,3. Taking the next adjacent node in

the layer 1 call it as u1
1,4. By repeating the same procedure in step 2, we get

u1
1,4, u

2
1,4, u

3
1,4, . . . .., u

n
1,4 which are at distance 2n− 2 from u1

1,4. Taking the next

adjacent node in the layer 1 call it as u1
1,5. By repeating the same procedure in

step 2, we get u1
1,5, u

2
1,5, u

3
1,5, . . . .., u

n
1,5 which are at distance 2n − 2 from u1

1,5.

Taking the next adjacent node in the layer 1 call it as u1
1,6. By repeating the

same procedure in step 2, we get u1
1,6, u

2
1,6, u

3
1,6, . . . .., u

n
1,6 which are at distance

2n− 2 from u1
1,6.

Step 4: Connect any two nodes un
(1,i) and un

(1,j) by an edge if and only if

|i− j| = 1 or 5, n = 2, 3, 4, · · ·

Output:

Note 2.1. In figure 4, Green color edges → edges in the first layer
Orange color edges → edges in the second layer
Pink color → edges in the third layer
Red color → edges in the fourth layer

3. Variants of Honeycomb and Enhanced Honeycomb networks

In this section, Enhanced Honeycomb Networks are derived from Honeycomb
Networks.
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Figure 3. Enhanced Honeycomb Network of Dimension 4

Figure 4. Enhanced Honeycomb Network of Dimension 4

Figure 5. Honeycomb Network of size two HC(2)

The number of vertices and edges of the HC(n) are 6n2 and 9n2 − 3n, re-
spectively, for n ≥ 1 [8]. The parameter n of HC(n) is called the dimension of
HC(n).
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Figure 6. Enhanced Honeycomb Network of size two
EHC(2)

Figure 7. Enhanced Honeycomb Network of size four
EHC(3)

Enhanced Honeycomb network EHC(n) is derived from Honeycomb network
HC(n) by introducing six new edges on each layer. Enhanced Honeycomb Net-
works has 6n2 vertices and 9n2 + 3n− 6 edges.

The advantage of this new network over Honeycomb is that it has 6 edge-
disjoint Hamiltonian cycles for every perfect sub-Honeycombe topology and di-
ameter is (2n + 1), which is almost 50% of the diameter of the Honeycomb
network 4n−1. The crossing number of EHC(n) is 3(n−1)(n−2) which is less
than the crossing number of honeycomb torus. Here perfect Honeycombe topol-
ogy is a graph derived from the Honeycomb network by introducing 6 new edges
on the boundary layer only. This new network also called Mostar Honeycomb
or Heightened Honeycomb networks.

4. Hamiltonian Properties of Enhanced Honeycomb Networks

Lemma 4.1. Enhanced Honeycomb network of dimension two EHC(2) is bi-
partite and Hamiltonian.
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Proof. From the drawing algorithm of Enhanced Honeycomb Networks, it is easy
to see that it has no odd cycle, therefore EHC(n) is bipartite. Here, EHC(1) is a
simple cycle which is Hamiltonian. We select all the nodes in layer 1 of EHC(2)
and start the cycle from the node ”a1(110) → b1(100) → c1(010) → d1(001) →
e1(101) → f1(111) → a2(110) → b2(100) → c2(010) → d2(001) → e2(101) →
f2(111) → a3(110) → b3(100) → c3(010) → d3(001) → e3(101) → f3(111) →
a4(110) → b4(100) → c4(010) → d4(001) → e4(101) → f4(111) → a1(110)”
(Figure-7− a & Figure-7− b). This graph has a Hamiltonian path. Also, EHC
is a Hamiltonian graph for n = 2. It is seen that EHC(2) is a bipartite graph
and Hamiltonian graphs as intuitively.

Figure 8. EHC(2)

Figure 9. EHC(2)

Thus, we have found a Hamiltonian cycle in EHC(2) and hence it is Hamil-
tonian. Using the symmetrical nature of the graph, we can find another five
Hamiltonian cycles in EHC(2). For example, the second Hamiltonian Cycle is
given by the following closed sequence of nodes.

”b1(100) → c1(010) → d1(001) → e1(101) → f1(111) → a1(110) → f4(111) →
e4(101) → d4(001) → a2(110) → b2(100) → c2(010) → d2(001) → e2(101) →
f2(111) → a3(110) → b3(100) → c3(010) → d3(001) → e3(101) → f3(111) →
c4(010) → b4(100) → a4(110) → b1(100)”.
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Figure 10. EHC(2)

Figure 11. EHC(2)

We extend this idea to find an Hamiltonian cycle is in n dimensional Enhanced
Honeycomb Networks-EHC(n). □

Lemma 4.2. Enhanced Honeycomb network EHC(n) of dimension n is bipar-
tite.

Proof. By the drawing algorithm EHC(n), it is clear that it has no odd cycle,
therefore, EHC(n) is Bipartite graph. □

Theorem 4.3. Enhanced Honeycomb networks EHC(n) are Hamiltonian.

Proof. To prove the theorem, we select the starting node from any node with
degree 3 in layer 1 of EHC(3) and EHC(4). We have two different starting
nodes:

The starting node has three adjacent nodes with degree 3 which is denoted
by a1,
The starting node has three adjacent nodes with degree 3 which is denoted by b1.

First strategy: We assume three adjacent of the starting nodes has 3−degree
nodes in layer 1 and start the cycle from the node ”a1(110) → b1(100) →
c1(010) → d1(001) → e1(101) → f1(111) → a2(110) → b2(100) → c2(010) →
d2(001) → e2(101) → f2(111) → a3(110) → b3(100) → c3(010) → d3(001) →
e3(101) → f3(111) → a4(110) → b4(100) → c4(010) → d4(001) → e4(101) →
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f4(111) → a1(110)”. We walk clockwise and counterclockwise in EHC when
the dimension is odd or even. (Figure 8− a and Figure 9− a)

Second strategy: We assume three adjacent of the starting nodes has 3−degree
nodes ”b1 → c1 → d1 → e1 → f1 → a1”. We walk clockwise and counterclock-
wise in EHC when the dimension is odd or even. (Figure 8−b and Figure 9−b).
By symmetrical nature, we can start c1, d1, e1 and f1 from layer 1.

Now, we proved that Enhanced Honeycomb Network is a Hamiltonian graph.
In Enhanced Honeycomb Network EHC(n), the total number of layer edges are
(6n)2, the total number of curve edges are 6n− 6 and the total number of wheel
edges are (3n)2 − 3n. Therefore, the total number of edges of the EHC(n) are
9n2 +3n− 6. Here, 2(n− 1) wheel edges will lie in a Hamiltonian cycle HC1. A
Hamiltonian number of a wheel edge is the number of Hamiltonian cycles pass-
ing through the wheel edge. Then the number of wheel edges passing through
Hamiltonian cycle is 62(n−1) in HCi where 1 ≤ i ≤ 6.But in Hamiltonian cycle
HC1, the total numbers of uncovered wheel edges are 3n2 − 13n+ 10 and layer
edges are 2n − 1. In Figure − 8(a) and Figure − 8(b), we have shown 2 types
of Hamiltonian cycle. Generally, we can get 6 Hamiltonian cycles from layer 1.

The total number of layer edges in HCi are 6n2 − 6n+ 6 + 6n− 6 = 6n2.
The total number of wheel edges in HCi is 6n− 6.
Curve edges in each layer of HCi is 6.
The total number of uncovered edges in HCi is 3n

2 − 3n− 6.

Figure 12. Enhanced Honeycomb Network of Dimension 3

□
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Figure 13. Enhanced Honeycomb Network of Dimension 3

Figure 14. Enhanced Honeycomb Network of Dimension 4

Figure 15. Enhanced Honeycomb Network of Dimension 4
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Remark 4.4. (1) Edges in the first layer the Hamiltonian count is 5.
(2) Wheel edges connected to the first layer the Hamiltonian cycle is 2.
(3) Hamiltonian count for curve edge is 1.

Theorem 4.5. The Enhanced Honeycomb network is a Hamiltonian graph for
n dimension using an2 ,bn2 ,cn2 ,dn2 ,en2 and fn2 bit gray code, respectively.

Proof. Every edge in layer 1 lies in atmost 5 Hamiltonian cycle. (f1, a2) lies
in atmost 2 Hamiltonian cycle. By symmetrical nature, the other edges are
connecting in layer 1 and layer 2 will present in atmost 2 Hamiltonian cycle. In
Enhanced Honeycomb Network, curve edges are (c4, d4), (d8, e8) for dimension 2
and 3. In dimension 1, 2, 3 and 4, we have a12 , b12 , c12 , d12 , e12 and f12 bit gray
codes, a22 ,b22 ,c22 ,d22 ,e22 and f22 bit grade codes, a32 ,b32 ,c32 ,d32 ,e32 and f32 bit
gray codes and a42 ,b42 ,c42 ,d42 ,e42 and f42 bit gray code. For dimension n, the
Hamiltonian graph for n dimension using an2 ,bn2 ,cn2 ,dn2 ,en2 and fn2 , bit gray
code, respectively. □

An Algorithm to find a Hamiltonian cycle in EHC(n)

In order to build a Hamiltonian cycle in EHC(n) without any edge crossings,
we have provided an additional algorithm.

Input:

Step 1: Let c4 and d4 denote the neighbor of any two vertices f4 and a2 in
the clockwise respectively. Let us choose two vertices f1 and a1 in the first layer
such that the f1a1 is in the edge set of EHC(n).

Step 2: Let the center of EHC(n) be O. Draw the axes M and N from O,
such that M and N pass through f1 and a1 respectively. Clearly ∠MON = 60◦.

Step 3: Let f4 and a2 be the two points of intersection of axes M and N
with nth layer, then the distance between f4 and a2 is d(f4, a2) = 2n − 1. If
n is odd, then clearly a degree of d8 and degree of e8 is equal to four. i.e
d(d8) = d(de8) = 4. If n is even, then d(f4) = d(a2) = 3.

Step 4: Starting from vertex a1 (of the odd layer), let’s move the cycle in a
clockwise direction without crossing the axes M and N .

Step 5: Travel anticlockwise without crossing the axes M and N after reach-
ing the second (even) stratum. Similar to this, move without crossing the axes
M and N in the even layer in a clockwise manner and the odd layer in an an-
ticlockwise way. The path must be maintained through edge c4d4 when n is
even, and edge d8e8 when n is odd, after it has passed through the nth layer
without crossing the axes M and N . So, in EHC(n), we can always discover a
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Hamiltonian cycle.

Output:

Figure 16. Enhanced Honeycomb Network of Dimension
2 EHC(2)

Figure 17. Enhanced Honeycomb Network of Dimension
3 EHC(3)

Figure 18. Enhanced Honeycomb Network of Dimension
4 EHC(4)
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5. Result discussion

We have proved that the Enhanced Honeycomb network of dimension two
EHC(2) & EHC(n) are bipartite and Hamiltonian. Enhanced Honeycomb
networks EHC(n) are Hamiltonian. The Enhanced Honeycomb network is a
Hamiltonian graph for n dimension using an2 ,bn2 ,cn2 ,dn2 ,en2 and fn2 bit gray
code, respectively.

6. Conclusion

This article deals with deriving a new network such as Enhanced honeycomb
network EHC(n) is derived from Honeycomb network HC(n) by introducing
six new edges on each layer. Enhanced honeycomb networks has 6n2 vertices
and 9n2 + 3n− 6 edges. The advantage of this new network over Honeycomb is
that it has 6 edge disjoint Hamiltonian cycles for every perfect sub-Honeycombe
topology, and diameter is (2n+1), which is almost 50% of the diameter of Hon-
eycomb network. We get labeling of nodes in Enhanced Honeycomb networks
EHC for any dimensions, using gray codes. Also, we find the upper bound for
gray code bit number labeling of EHC.
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