DOI QR코드

DOI QR Code

강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정

Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm

  • 마상수 (경상국립대학교 건설시스템공학과, 국토안전관리원) ;
  • 권태윤 (경상국립대학교 건설시스템공학과) ;
  • 이원홍 (경상국립대학교 건설시스템공학과) ;
  • 안진희 (경상국립대학교 건설시스템공학과)
  • Sang-Soo Ma ;
  • Tae-Yun Kwon ;
  • Won-Hong Lee ;
  • Jin-Hee Ahn (Gyeongsang National University)
  • 투고 : 2024.05.16
  • 심사 : 2024.06.18
  • 발행 : 2024.08.31

초록

본 연구에서는 강사장교의 비선형 거동과 하모니 서치 알고리즘에 기반한 사장교 부재 단면 결정 방법을 제시하였다. 하모니 서치 알고리즘은 초기값 설정, 하모니 메모리 초기화, 새로운 하모니 메모리 구성 및 하모니 메모리 업데이트의 과정을 반복하여 최적값을 탐색함으로써 사장교 부재 단면을 결정한다. 하모니 서치 알고리즘으로 선정된 주요 부재 단면으로 3차원 강사장교의 비선형 초기형상해석을 수행하였으며, 초기장력과 형상을 고려하여 복잡한 거동특성과 각 부재의 비선형성을 반영한 사장교 주요 부재인 주탑, 보강거더, 가로보 및 케이블의 최적 단면을 결정하였다. 사장교 주요 부재의 단면 결정을 위한 목적함수로는 전체 중량을 사용하였으며, 제약조건으로 한계상태설계법을 바탕으로 하중저항능력과 사용성에 대한 제약조건식 및 보강거더와 가로보 단면의 폭과 높이의 비율을 추가적인 제약조건으로 고려하고, 주탑, 보강거더 및 가로보의 기하 및 재료 비선형성과 케이블 부재의 비선형성에 따라 부재 단면을 결정할 수 있도록 하였다. 최적 단면 결정 결과, 제안한 해석 방법은 사장교의 다양한 설치조건에 따라 최적 단면을 결정할 수 있으며, 비선형성을 고려한 사장교 부재 단면제원을 하모니 서치 기법을 통하여 결정할 수 있음을 확인하였다.

In this study, a determination method of structural member section based on Nonlinear behaviors of steel cable-stayed bridges and the Harmony Search algorithm was presented. The Harmony Search algorithm determines the structural member section of cable-stayed bridges by repeating the process of setting the initial value, initializing the harmony memory, configuring the new harmony memory, and updating the harmony memory to search for the optimal value. The nonlinear initial shape analysis of a three-dimensional steel cable-stayed bridge was performed with the cross-section of the main member selected by the Harmony Search algorithm, and the optimal cross-section of the main members of the cable-stayed bridge, such as pylons, girders, cross-beams, and cables, reflecting the complex behavior characteristics and the nonlinearity of each member was determined in consideration of the initial tension and shape. The total weight was used as the objective function for determining the cross-section of the main member of the cable-stayed bridges, and the load resistance ability and serviceability based on the ultimate state design method were used as the restraint conditions. The width and height ratio of the girder and cross-section were considered additional restraint conditions. The optimal sections of the main members were made possible to be determined by considering the geometry and material nonlinearity of the pylons, girders, and cross-sections and the nonlinearity of the cable members. As a result of determining the optimal cross-section, it was confirmed that the proposed analysis method can determine the optimal cross-section according to the various constraint conditions of the cable-stayed bridge, and the structural member section of the cable-stayed bridge considering the nonlinearity can be determined through the Harmony Search algorithm.

키워드

참고문헌

  1. Ren, W.-X. (1999), Ultimate Behavior of Long-Span CableStayed Bridges, Journal of Bridge Engineering, ASCE, 4(1), 30-37.
  2. Kim, H.-J., Won, D. H., Kang, Y.-J., and Kim, S. (2017), Structural Stability of Cable-stayed Bridges During Construction, International Journal of Steel Structures, Springer, 17(2), 443-469.
  3. Cong, Y., and Kang, H. (2019), Planar nonlinear dynamic behavior of a cable-stayed bridge under excitation of tower motion, European Journal of Mechanics - A/Solids, ELSEVIER, 76, 91-107.
  4. Song, W.-K., Kim, S.-E., and Ma, S. S. (2005), Initial Shape Determination of Steel Cable-Stayed Bridges Using Nonlinear Analysis, KSCE Journal of Civil and Environmental Engineering Research, Korean Society of Civil Engineers, 25(1A), 73-79 (in Korean).
  5. Kim, S., Lee, K. S., Kim, K. S., and Kang, Y.J. (2010), Analytical Study of Geometric Nonlinear Behavior of Cable-stayed Bridges, KSCE Journal of Civil and Environmental Engineering Research, Korean Society of Civil Engineers, 30(1A), 1-13 (in Korean).
  6. Song, Y.-H., and Kim, M.-Y. (2011), Practical Determination Method of Initial Cable Forces in Cable-Stayed Bridges, Journal of the Computational Structural Engineering Institute of Korea, Computational Structural Engineering Institute of Korea, 24(1), 87-95 (in Korean).
  7. Wu, J., Frangopol, D. M., and Soliman, M., (2015), Geometry control simulation for long-span steel cable-stayed bridges based on geometrically nonlinear analysis, Engineering Structures, ELSEVIER, 90, 71-82.
  8. Ma, S.-S., Kwon, T.-Y., Lee, W.-H., and Ahn, J.-H. (2024), Determining Cable Cross-Section and Stress Level according to Steel Cable-Stayed Bridge Type Using Harmony Search, Journal of Korean Society of Steel Construction, Korean Society of Steel Construction, 36(2), 121-132.
  9. Janjic, D., Pircher, M., and Pircher, H. (2003), Optimization of Cable Tensioning in Cable-Stayed Bridges, Journal of Bridge Engineering, ASCE, 8(3), 131-137.
  10. Kim, C. H., and Lee, H. S. (2005), Analyses of Initial Equilibrium States of Cable-stayed Bridges by Optimization, KSCE Journal of Civil and Environmental Engineering Research, Korean Society of Civil Engineers, 25(6A), 1071-1084.
  11. Park, D. Y. (2012), A Study for Finding Optimized Cable Forces of Cable Stayed Bridge, Journal of the Korean Society for Advanced Composite Structures, Korean Society for Advanced Composite Structures, 3(1), 16-20.
  12. Hassan. M. M. (2013), Optimization of stay cables in cable-stayed bridges using finite element, genetic algorithm, and B-spline combined technique, Engineering Structures, ELSEVIER, 49, 643-654.
  13. Jung, M. R., Park, S. W., Min, D. J., and Kim, M. Y. (2016), A Simplified Analysis Method for Determining an Optimized Initial Shape of Cable-Stayed Bridges, KSCE Journal of Civil and Environmental Engineering Research, Korean Society of Civil Engineers, 36(6), 947-954.
  14. Atmaca, B. Dede, T., and Grzywinski, M. (2020), Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm, Steel and Composite Structures, Techno-Press, 34(6), 853-862.
  15. Zhang, H.-H., Sun, N.-N., Wang, P.-Z., Liu, M.-H., and Li, Y. (2020), Optimization of Cable Force Adjustment in Cable-Stayed Bridge considering the Number of Stay Cable Adjustment, Advances in Civil Engineering, Hindawi, 2020, 4527309.
  16. Feng, Y., Lan, C., Briseghella, B., Fenu, L., and Zordan, T. (2022), Cable optimization of a cable-stayed bridge based on genetic algorithms and the influence matrix method, Engineering Optimization, Taylor & Francis, 54(1), 20-39.
  17. Guo, J., and Guan, Z. (2023), Optimization of the cable forces of completed cable-stayed bridges with differential evolution method, Structures, ELSEVIER, 47, 1416-1427.
  18. Wang, L., Xiao, Z., Li, M., and Fu, N. (2023), Cable Force Optimization of Cable-Stayed Bridge Based on Multiobjective Particle Swarm Optimization Algorithm with Mutation Operation and the Influence Matrix, Appled Sciences, MDPI, 13(4), 2611.
  19. Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001), A New Heuristic Optimization Algorithm: Harmony Search, Simulation: Transaction of The Society for Modeling and Simulation International, SAGE, 76(2), 60-68.
  20. Kim, B.-I., and Kwon, J.-H. (2013), Optimum Design of Truss on Sizing and Shape with Natural Frequency Constraints and Harmony Search Algorithm, Journal of Ocean Engineering and Technology, Korean Society of Ocean Engineers, 27(5), 36-42 (in Korean).
  21. Lee, H. M., Yoo, D. G., Lee, E. H.,Choi, Y. H., and Kim, J. H. (2016), Development and Applications of Multi-layered Harmony Search Algorithm for Improving Optimization Efficiency, Journal of the Korea Academia-Industrial Cooperation Society, The Korea Academia-Industrial cooperation Society, 17(4), 1-12 (in Korean).
  22. Kim, E.-S., Shin, S. S., Kim, Y.-H., and Yoon, Y. (2021) State of the Art Technology Trends and Case Analysis of Leading Research in Harmony Search Algorithm, Journal of The Korea Convergence Society, 12(11), 81-90 (in Korean).
  23. Geem, Z. W. (2022), Review on Theory and Applications of Harmony Search Algorithm based on Korea Citation Index, Journal of Korean Institute of Intelligent Systems, Korean Institute of Intelligent Systems, 32(3), 244-253 (in Korean).
  24. Kim, B.-I., and Kwon, J.-H. (2013), Optimum Design of Truss on Sizing and Shape with Natural Frequency Constraints and Harmony Search Algorithm, Journal of Ocean Engineering and Technology, Korean Society of Ocean Engineers, 27(5), 36-42 (in Korean).
  25. Kim, B. I. (2015), Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing, Journal of Korean Society of Steel Construction, Korean Society of Steel Construction, 27(2), 131-142 (in Korean).
  26. Jung, J.-S., Choi, Y.-C., and Lee, K.-S. (2017), Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function, Journal of the Architectural Institute of Korea Structure & Construction, Architectural Institute of Korea, 33(12), 53-62 (in Korean).
  27. Kim, J. H. (2018), Harmony search algorithm and its application to optimization problems in civil and water resources engineering, Journal of Korea Water Resources Association, Korea Water Resources Association, 51(4), 281-291 (in Korean).
  28. MOLIT (Ministry of Land, Infrastructure and Transport, Korea) (2017), Design Standard for Steel Structural Members (Load & Resistance Factor Design), KDS 14 31 10, MOLIT, Korea (in Korean).
  29. MOLIT (Ministry of Land, Infrastructure and Transport, Korea) (2018) Design Standard for Steel Bridges(Limit State Design), KDS 24 14 31, MOLIT, Korea (in Korean).
  30. Kim, S.-E., Choi, S.-H., and Ma, S.-S. (2003), Performance based design of steel arch bridges using practical inelastic nonlinear analysis, Journal of Constructional Steel Research, ELSEVIER, 59(1), 91-108.
  31. Chen, W. F. and Lui, E. M. (1992), Stability Design of Steel Frames, CRC Press, Boca Raton, 380.
  32. Wang, P. H., Tseng, T. C., and Yang, C. G. (1993), Initial Shape of Cable-Stayed Bridges, Computer & Structures, ELSEVIER, 47(1), 111-123.
  33. Ernst, H. J. (1965), Der E-Modul von Seilen unter Beruecksichtigung des Durchhanges, Der Bauingenieur, 40(2), 52-55 (in German).
  34. Fleming, J. F. (1979), Nonlinear static analysis of cable-stayed bridge structures, Computer & Structures, ELSEVIER, 10(4), 621-635.
  35. Gimsing, N. J. (2012), Cable Supported bridges: Concepts and Design(3rd Ed.), John Wiley & Sons, UK.
  36. Nazmy, A. S. and Abdel-Ghaffar, A. M. (1990), Three-dimensional nonlinear static analysis of cable-stayed bridges, Computers and Structures, ELSEVIER, 34(2), 257-271.
  37. MOLIT (Ministry of Land, Infrastructure and Transport, Korea) (2021) Load Combination for Bridge Design (Limit State Design), KDS 24 12 11, MOLIT, Korea (in Korean).
  38. MOLIT (Ministry of Land, Infrastructure and Transport, Korea) (2021) Bridge Design Load (Limit State Design), KDS 24 12 21, MOLIT, Korea (in Korean).