References
- M. C. Amirani, M. Toorani, and A. Beheshti Shirazi, "A New approach to Content-based File Type Detection," IEEE Symposium on Computers and Communications, 2008, pp. 1103-1108.
- Jonghoon Won, Minji Kang, Jisung Park, Jihong Kim, "File-Fragment Type Identification using Selected N-grams by Apriori Algorithm," in Proc. Korea Software Congress (KSC). Gangwon State, 2018, pp. 1459-1461.
- F. Mansouri Hanis and M. Teimouri, "Dataset for file fragment classification of textual file formats," BMC Res. Notes, vol. 12, no. 1, p. 801, Dec. 2019.
- S. Fitzgerald, G. Mathews, C. Morris, and O. Zhulyn, "Using NLP techniques for file fragment classification," Digit. Invest., vol. 9, pp. S44-S49, 2012. https://doi.org/10.1016/j.diin.2012.05.008
- N. L. Beebe, L. A. Maddox, L. Liu, and M. Sun, "Sceadan: Using concatenated N-Gram vectors for improved file and data type classification," IEEE Trans. Inf. Forensics Security, vol. 8, no. 9, pp. 1519-1530, 2013. https://doi.org/10.1109/TIFS.2013.2274728
- T. Xu, M. Xu, Y. Ren, J. Xu, H. Zhang, and N. Zheng, "A file fragment classification method based on grayscale image," J. Comput., vol. 9, no. 8, pp. 1863-1870, 2014.
- N. Zheng, J. Wang, T. Wu, and M. Xu, "A fragment classification method depending on data type," in Proc. IEEE Int. Conf. Comput. Inf. Technol.; Ubiquitous Comput. Commun.; Dependable, Autonomic Secure Comput.; Pervasive Intell. Comput., pp. 1948-1953, 2015.
- N. Beebe, L. Liu, and M. Sun, "Data type classification: Hierarchical class-to-type modeling," in Advances in Digital Forensics XII (IFIP Advances in Information and Communication Technology). New Delhi, India: Springer, pp. 325-343, 2016.
- Q. Chen et al., "File Fragment Classification Using Grayscale Image Conversion and Deep Learning in Digital Forensics," 2018 IEEE Security and Privacy Workshops (SPW), pp. 140-147, May. 2018.
- Manish Bhatt, Avdesh Mishra, Md. Wasi Ul Kabir, S. E. Blake-Gatto, Rishav Rajendra, Tamjidul Hoque and Irfan Ahmed, "Hierarchy-Based File Fragment Classification," Mach. Learn. Knowl. Extr. 2, no. 3, pp. 216-232, 2020. https://doi.org/10.3390/make2030012
- Bhat, Anirudh, Aryan Likhite, Swaraj Chavan and Leena Ragha, "File Fragment Classification using Content Based Analysis," ITM Web of Conferences, 2021.
- G. Mittal, P. Korus and N. Memon, "FiFTy: Large-Scale File Fragment Type Identification Using Convolutional Neural Networks," IEEE Transactions on Information Forensics and Security, vol. 16, pp. 28-41, 2021. https://doi.org/10.1109/TIFS.2020.3004266
- Haque, Md. Enamul and Mehmet Engin Tozal, "Byte embeddings for file fragment classification," Future Generation Computer Systems, vol. 127, pp. 448-461, 2022. https://doi.org/10.1016/j.future.2021.09.019
- K. M. Saaim, M. Felemban, S. Alsaleh, and A. Almulhem, "Light-Weight File Fragments Classification Using Depthwise Separable Convolutions," IFIP Adv. Inf. Commun. Technol., vol. 648 IFIP, pp. 196-211, 2022. https://doi.org/10.1007/978-3-031-06975-8_12
- M. Ghaleb, K. Saaim, M. Felemban, S. Al-Saleh, and A. Al-Mulhem, "File Fragment Classification using Light-Weight Convolutional Neural Networks," arXiv, May 01, 2023.
- Nan Zhu, Yang Liu, Kun Wang and Changyou Ma, "File Fragment Type Identification Based on CNN and LSTM," Proceedings of the 2023 7th International Conference on Digital Signal Processing, Association for Computing Machinery, New York, NY, USA, pp. 16-22, 2023.
- Govind Mittal, PawelKorus, and Nasir Memon, File Fragment Type (FFT)-75 Dataset [Online]. Available: http://dx.doi.org/10.21227/kfxw-8084.
- Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt, "Bringing science to digital forensics with standardized forensic corpora," Digit. Investig. vol. 6, pp. S2-S11, 2009. https://doi.org/10.1016/j.diin.2009.06.016