DOI QR코드

DOI QR Code

Frailty, Sarcopenia, Cachexia, and Malnutrition in Heart Failure

  • Daichi Maeda (Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine) ;
  • Yudai Fujimoto (Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine) ;
  • Taisuke Nakade (Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine) ;
  • Takuro Abe (Department of Cardiology, Saitama Medical Center, Saitama Medical University) ;
  • Shiro Ishihara (Department of Cardiology, Saitama Medical Center, Saitama Medical University) ;
  • Kentaro Jujo (Department of Cardiology, Saitama Medical Center, Saitama Medical University) ;
  • Yuya Matsue (Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine)
  • Received : 2024.03.20
  • Accepted : 2024.04.10
  • Published : 2024.07.01

Abstract

With global aging, the number of patients with heart failure has increased markedly. Heart failure is a complex condition intricately associated with aging, organ damage, frailty, and cognitive decline, resulting in a poor prognosis. The relationship among frailty, sarcopenia, cachexia, malnutrition, and heart failure has recently received considerable attention. Although these conditions are distinct, they often exhibit a remarkably close relationship. Overlapping diagnostic criteria have been observed in the recently proposed guidelines and position statements, suggesting that several of these conditions may coexist in patients with heart failure. Therefore, a comprehensive understanding of these conditions is essential, and interventions must not only target these conditions individually, but also provide comprehensive management strategies. This review article provides an overview of the epidemiology, diagnostic methods, overlap, and prognosis of frailty, sarcopenia, cachexia, and malnutrition in patients with heart failure, incorporating insights from the FRAGILEHF study data. Additionally, based on existing literature, this article discusses the impact of these conditions on the effectiveness of guideline-directed medical therapy for patients with heart failure. While recognizing these conditions early and promptly implementing interventions may be advantageous, further data, particularly from well-powered, large-scale, randomized controlled trials, are necessary to refine personalized treatment strategies for patients with heart failure.

Keywords

References

  1. van Deursen VM, Urso R, Laroche C, et al. Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail 2014;16:103-11.
  2. Cho JY, Cho DH, Youn JC, et al. Korean Society of Heart Failure guidelines for the management of heart failure: definition and diagnosis. Korean Circ J 2023;53:195-216.
  3. Lee JH, Hwang KK. End-of-life care for end-stage heart failure patients. Korean Circ J 2022;52:659-79.
  4. Vest AR, Chan M, Deswal A, et al. Nutrition, obesity, and cachexia in patients with heart failure: a consensus statement from the Heart Failure Society of America Scientific Statements Committee. J Card Fail 2019;25:380-400.
  5. Damluji AA, Alfaraidhy M, AlHajri N, et al. Sarcopenia and cardiovascular diseases. Circulation 2023;147:1534-53.
  6. Pandey A, Kitzman D, Reeves G. Frailty is intertwined with heart failure: mechanisms, prevalence, prognosis, assessment, and management. JACC Heart Fail 2019;7:1001-11.
  7. Tanaka S, Yamashita M, Saito H, et al. Multidomain frailty in heart failure: current status and future perspectives. Curr Heart Fail Rep 2021;18:107-20.
  8. Afilalo J, Alexander KP, Mack MJ, et al. Frailty assessment in the cardiovascular care of older adults. J Am Coll Cardiol 2014;63:747-62.
  9. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56:M146-56.
  10. McDonagh J, Martin L, Ferguson C, et al. Frailty assessment instruments in heart failure: a systematic review. Eur J Cardiovasc Nurs 2018;17:23-35.
  11. Oksuzyan A, Juel K, Vaupel JW, Christensen K. Men: good health and high mortality. Sex differences in health and aging. Aging Clin Exp Res 2008;20:91-102.
  12. Denfeld QE, Habecker BA, Camacho SA, et al. Characterizing sex differences in physical frailty phenotypes in heart failure. Circ Heart Fail 2021;14:e008076.
  13. Zhang Y, Zhang J, Ni W, et al. Sarcopenia in heart failure: a systematic review and meta-analysis. ESC Heart Fail 2021;8:1007-17.
  14. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci 2008;63:829-34.
  15. Chandrashekhar Iyer L, Vaishali K, Babu AS. Prevalence of sarcopenia in heart failure: a systematic review. Indian Heart J 2023;75:36-42.
  16. Maeda D, Matsue Y, Kagiyama N, et al. Sex differences in the prevalence and prognostic impact of physical frailty and sarcopenia among older patients with heart failure. Nutr Metab Cardiovasc Dis 2022;32:365-72.
  17. Beaudart C, McCloskey E, Bruyere O, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr 2016;16:170.
  18. Valentova M, Anker SD, von Haehling S. Cardiac cachexia revisited: the role of wasting in heart failure. Heart Fail Clin 2020;16:61-9.
  19. Maekawa E, Noda T, Maeda D, et al. Prognostic impact of cachexia by multi-assessment in older adults with heart failure: FRAGILE-HF cohort study. J Cachexia Sarcopenia Muscle 2023;14:2143-51.
  20. Piepoli MF, Kaczmarek A, Francis DP, et al. Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure. Circulation 2006;114:126-34.
  21. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 2010;1:129-33.
  22. Evans WJ, Morley JE, Argiles J, et al. Cachexia: a new definition. Clin Nutr 2008;27:793-9.
  23. Lv S, Ru S. The prevalence of malnutrition and its effects on the all-cause mortality among patients with heart failure: a systematic review and meta-analysis. PLoS One 2021;16:e0259300.
  24. Donini LM, Scardella P, Piombo L, et al. Malnutrition in elderly: social and economic determinants. J Nutr Health Aging 2013;17:9-15.
  25. Sze S, Pellicori P, Zhang J, Weston J, Clark AL. The impact of malnutrition on short-term morbidity and mortality in ambulatory patients with heart failure. Am J Clin Nutr 2021;113:695-705.
  26. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. Sci World J 2001;1:323-36.
  27. Sanchez-Rodriguez D, Marco E, Cruz-Jentoft AJ. Defining sarcopenia: some caveats and challenges. Curr Opin Clin Nutr Metab Care 2020;23:127-32.
  28. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:16-31.
  29. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 2020;21:300-307.e2.
  30. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 2010;39:412-23.
  31. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101.
  32. Bhasin S, Travison TG, Manini TM, et al. Sarcopenia definition: the position statements of the Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc 2020;68:1410-8.
  33. Cawthon PM, Manini T, Patel SM, et al. Putative cut-points in sarcopenia components and incident adverse health outcomes: an SDOC analysis. J Am Geriatr Soc 2020;68:1429-37.
  34. Morishita T, Uzui H, Sato Y, Mitsuke Y, Tada H. Associations between cachexia and metalloproteinases, haemodynamics and mortality in heart failure. Eur J Clin Invest 2021;51:e13426.
  35. Zopf Y, Schink K, Reljic D, et al. Assessing cachexia in older patients: different definitions - but which one is the most practical for clinical routine? Arch Gerontol Geriatr 2020;86:103943.
  36. Emami A, Saitoh M, Valentova M, et al. Comparison of sarcopenia and cachexia in men with chronic heart failure: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur J Heart Fail 2018;20:1580-7.
  37. Janovska P, Melenovsky V, Svobodova M, et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J Cachexia Sarcopenia Muscle 2020;11:1614-27.
  38. Gaggin HK, Belcher AM, Gandhi PU, Ibrahim NE, Januzzi JL Jr. Serial echocardiographic characteristics, novel biomarkers and cachexia development in patients with stable chronic heart failure. J Cardiovasc Transl Res 2016;9:429-31.
  39. Fujimoto Y, Maeda D, Kagiyama N, et al. Prevalence and prognostic impact of the coexistence of cachexia and sarcopenia in older patients with heart failure. Int J Cardiol 2023;381:45-51.
  40. Jensen GL, Cederholm T, Correia MI, et al. GLIM criteria for the diagnosis of malnutrition: a consensus report from the Global Clinical Nutrition Community. JPEN J Parenter Enteral Nutr 2019;43:32-40.
  41. Hu Y, Zhang C, Zou C, Yang H, Chen Y, Liang T. Anthropometric measures and physical examination could be used to assess phenotypic GLIM (Global leadership initiative on malnutrition) criteria in heart failure patients. Nutr Metab Cardiovasc Dis 2023;33:2419-27.
  42. Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care 2008;11:566-72.
  43. White JV, Guenter P, Jensen G, et al. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr 2012;36:275-83.
  44. Cederholm T, Bosaeus I, Barazzoni R, et al. Diagnostic criteria for malnutrition - an ESPEN consensus statement. Clin Nutr 2015;34:335-40.
  45. Driggin E, Cohen LP, Gallagher D, et al. Nutrition assessment and dietary interventions in heart failure: JACC review topic of the week. J Am Coll Cardiol 2022;79:1623-35.
  46. Beltrami M, Fumagalli C, Milli M. Frailty, sarcopenia and cachexia in heart failure patients: different clinical entities of the same painting. World J Cardiol 2021;13:1-10.
  47. Valdiviesso R, Amaral TF, Moreira E, et al. Associations of medicine use and ejection fraction with the coexistence of frailty and sarcopenia in a sample of heart failure outpatients: a cross-sectional study. BMC Cardiovasc Disord 2023;23:594.
  48. Sze S, Zhang J, Pellicori P, Morgan D, Hoye A, Clark AL. Prognostic value of simple frailty and malnutrition screening tools in patients with acute heart failure due to left ventricular systolic dysfunction. Clin Res Cardiol 2017;106:533-41.
  49. Matsue Y, Kamiya K, Saito H, et al. Prevalence and prognostic impact of the coexistence of multiple frailty domains in elderly patients with heart failure: the FRAGILE-HF cohort study. Eur J Heart Fail 2020;22:2112-9.
  50. Fujimoto Y, Maeda D, Kagiyama N, et al. Prognostic implications of six-minute walking distance in patients with heart failure with preserved ejection fraction. Int J Cardiol 2023;379:76-81.
  51. Maeda D, Matsue Y, Kagiyama N, et al. Inaccurate recognition of own comorbidities is associated with poor prognosis in elderly patients with heart failure. ESC Heart Fail 2022;9:1351-9.
  52. Fujimoto Y, Matsue Y, Maeda D, et al. Association and prognostic value of multi-domain frailty defined by cumulative deficit and phenotype models in patients with heart failure. Can J Cardiol 2024;40:677-84.
  53. Konishi M, Kagiyama N, Kamiya K, et al. Impact of sarcopenia on prognosis in patients with heart failure with reduced and preserved ejection fraction. Eur J Prev Cardiol 2021;28:1022-9.
  54. Hirose S, Matsue Y, Kamiya K, et al. Prevalence and prognostic implications of malnutrition as defined by GLIM criteria in elderly patients with heart failure. Clin Nutr 2021;40:4334-40.
  55. Yang X, Lupon J, Vidan MT, et al. Impact of frailty on mortality and hospitalization in chronic heart failure: a systematic review and meta-analysis. J Am Heart Assoc 2018;7:e008251.
  56. Zhang Y, Yuan M, Gong M, Tse G, Li G, Liu T. Frailty and clinical outcomes in heart failure: a systematic review and meta-analysis. J Am Med Dir Assoc 2018;19:1003-1008.e1.
  57. Uchmanowicz I, Lee CS, Vitale C, et al. Frailty and the risk of all-cause mortality and hospitalization in chronic heart failure: a meta-analysis. ESC Heart Fail 2020;7:3427-37.
  58. Wang X, Zhou C, Li Y, Li H, Cao Q, Li F. Prognostic value of frailty for older patients with heart failure: a systematic review and meta-analysis of prospective studies. BioMed Res Int 2018;2018:8739058.
  59. Prokopidis K, Triantafyllidis KK, Kechagias KS, Mitropoulos A, Sankaranarayanan R, Isanejad M. Are sarcopenia and its individual components linked to all-cause mortality in heart failure? A systematic review and meta-analysis. Clin Res Cardiol. 2023 [Epub ahead of print].
  60. Chen R, Xu J, Wang Y, et al. Prevalence of sarcopenia and its association with clinical outcomes in heart failure: an updated meta-analysis and systematic review. Clin Cardiol 2023;46:260-8.
  61. Oguri M, Ishii H, Yasuda K, Sumi T, Takahashi H, Murohara T. Combined prognostic value of malnutrition using GLIM criteria and renal insufficiency in elderly heart failure. ESC Heart Fail 2022;9:704-11.
  62. Lin H, Zhang H, Lin Z, Li X, Kong X, Sun G. Review of nutritional screening and assessment tools and clinical outcomes in heart failure. Heart Fail Rev 2016;21:549-65.
  63. Li H, Cen K, Sun W, Feng B. Prognostic value of geriatric nutritional risk index in elderly patients with heart failure: a meta-analysis. Aging Clin Exp Res 2021;33:1477-86.
  64. Dong CH, Chen SY, Zeng HL, Yang B, Pan J. Geriatric nutritional risk index predicts all-cause mortality in patients with heart failure: a systematic review and meta-analysis. Clinics (Sao Paulo) 2021;76:e2258.
  65. Hu Y, Yang H, Zhou Y, et al. Prediction of all-cause mortality with malnutrition assessed by nutritional screening and assessment tools in patients with heart failure: a systematic review. Nutr Metab Cardiovasc Dis 2022;32:1361-74.
  66. Osorio AF, Ribeiro EC, Parahiba SM, Forte GC, Clausell NO, Souza GC. Prognostic value of nutritional screening tools in hospitalized patients with decompensated heart failure: a systematic review and meta-analysis. Nutr Res 2023;120:1-19.
  67. Li H, Zhou P, Zhao Y, Ni H, Luo X, Li J. Prediction of all-cause mortality with malnutrition assessed by controlling nutritional status score in patients with heart failure: a systematic review and meta-analysis. Public Health Nutr 2021;25:1-8.
  68. Chen MY, Wen JX, Lu MT, et al. Association between prognostic nutritional index and prognosis in patients with heart failure: a meta-analysis. Front Cardiovasc Med 2022;9:918566.
  69. Zhang X, Su Y. Low prognostic nutritional index predicts adverse outcomes in patients with heart failure: a systematic review and meta-analysis. Angiology 2024;75:305-13.
  70. Loncar G, Fulster S, von Haehling S, Popovic V. Metabolism and the heart: an overview of muscle, fat, and bone metabolism in heart failure. Int J Cardiol 2013;162:77-85.
  71. Hadad C, Damez C, Bouquillon S, et al. Neutral pentosides surfactants issued from the butadiene telomerization with pentoses: preparation and amphiphilic properties. Carbohydr Res 2006;341:1938-44.
  72. Anker SD, Laviano A, Filippatos G, et al.; ESPEN. ESPEN Guidelines on Parenteral Nutrition: on cardiology and pneumology. Clin Nutr 2009;28:455-60.
  73. Hersberger L, Dietz A, Burgler H, et al. Individualized nutritional support for hospitalized patients with chronic heart failure. J Am Coll Cardiol 2021;77:2307-19.
  74. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the health, aging, and body composition (Health ABC) study. Am J Clin Nutr 2008;87:150-5.
  75. Abizanda P, Lopez MD, Garcia VP, et al. Effects of an oral nutritional supplementation plus physical exercise intervention on the physical function, nutritional status, and quality of life in frail institutionalized older adults: the ACTIVNES study. J Am Med Dir Assoc 2015;16:439.e9-16.
  76. Ueno K, Kaneko H, Itoh H, et al. Effectiveness and approach of rehabilitation in patients with acute heart failure: a review. Korean Circ J 2022;52:576-92.
  77. Kim SE, Yoo BS. Treatment strategies of improving quality of care in patients with heart failure. Korean Circ J 2023;53:294-312.
  78. Nagatomi Y, Ide T, Higuchi T, et al. Home-based cardiac rehabilitation using information and communication technology for heart failure patients with frailty. ESC Heart Fail 2022;9:2407-18.
  79. Greenberg B. Medical management of patients with heart failure and reduced ejection fraction. Korean Circ J 2022;52:173-97.
  80. Hyun J, Cho JY, Youn JC, et al. Korean Society of Heart Failure guidelines for the management of heart failure: advanced and acute heart failure. Korean Circ J 2023;53:452-71.
  81. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42:3599-726.
  82. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/aha guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. Circulation 2017;136:e137-61.
  83. Tsutsui H, Isobe M, Ito H, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure - digest version. Circ J 2019;83:2084-184.
  84. Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 2022;400:757-67.
  85. Hamada T, Kubo T, Kawai K, et al.; Kochi YOSACOI study. Frailty interferes with the guideline-directed medical therapy in heart failure patients with reduced ejection fraction. ESC Heart Fail 2023;10:223-33.
  86. Sze S, Pellicori P, Zhang J, Weston J, Squire IB, Clark AL. Effect of frailty on treatment, hospitalisation and death in patients with chronic heart failure. Clin Res Cardiol 2021;110:1249-58.
  87. Kondo T, Adachi T, Kobayashi K, et al. Physical frailty and use of guideline-recommended drugs in patients with heart failure and reduced ejection fraction. J Am Heart Assoc 2023;12:e026844.
  88. Abe T, Jujo K, Maeda D, et al. The interaction between physical frailty and prognostic impact of heart failure medication in elderly patients. ESC Heart Fail 2023;10:1698-705.
  89. Onder G, Penninx BW, Balkrishnan R, et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 2002;359:926-30.
  90. Goldwater DS, Pinney SP. Frailty in advanced heart failure: a consequence of aging or a separate entity? Clin Med Insights Cardiol 2015;9 Suppl 2:39-46.
  91. Kim J, Grotegut CA, Wisler JW, et al. The β-arrestin-biased β-adrenergic receptor blocker carvedilol enhances skeletal muscle contractility. Proc Natl Acad Sci U S A 2020;117:12435-43.
  92. Greene SJ, Butler J, Albert NM, et al. Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry. J Am Coll Cardiol 2018;72:351-66.
  93. Brunner-La Rocca HP, Linssen GC, Smeele FJ, et al. Contemporary drug treatment of chronic heart failure with reduced ejection fraction: the CHECK-HF registry. JACC Heart Fail 2019;7:13-21.
  94. Pitt B. The role of mineralocorticoid receptor antagonists (MRAs) in very old patients with heart failure. Heart Fail Rev 2012;17:573-9.
  95. Abe T, Jujo K, Kametani M, et al. Prognostic impact of additional mineralocorticoid receptor antagonists in octogenarian heart failure patients. ESC Heart Fail 2020;7:2711-24.
  96. Sanders NA, Supiano MA, Lewis EF, et al. The frailty syndrome and outcomes in the TOPCAT trial. Eur J Heart Fail 2018;20:1570-7.
  97. Dewan P, Jackson A, Jhund PS, et al. The prevalence and importance of frailty in heart failure with reduced ejection fraction - an analysis of PARADIGM-HF and ATMOSPHERE. Eur J Heart Fail 2020;22:2123-33.
  98. Yabe D, Shiki K, Homma G, et al. Efficacy and safety of the sodium-glucose co-transporter-2 inhibitor empagliflozin in elderly Japanese adults (≥65 years) with type 2 diabetes: a randomized, double-blind, placebo-controlled, 52-week clinical trial (EMPA-ELDERLY). Diabetes Obes Metab 2023;25:3538-48.
  99. Butt JH, Dewan P, Merkely B, et al. Efficacy and safety of dapagliflozin according to frailty in heart failure with reduced ejection fraction: a post hoc analysis of the DAPA-HF trial. Ann Intern Med 2022;175:820-30.
  100. Coats AJ, Butler J, Tsutsui H, et al. Efficacy of empagliflozin in heart failure with preserved ejection fraction according to frailty status in EMPEROR-preserved. J Cachexia Sarcopenia Muscle 2024;15:412-24.