DOI QR코드

DOI QR Code

Mine water inrush characteristics based on RQD index of rock mass and multiple types of water channels

  • Jinhai Zhao (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Weilong Zhu (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Wenbin Sun (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Changbao Jiang (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Hailong Ma (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Hui Yang (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology)
  • Received : 2023.07.21
  • Accepted : 2024.07.15
  • Published : 2024.08.10

Abstract

Because of the various patterns of deep-water inrush and complicated mechanisms, accurately predicting mine water inflows is always a difficult problem for coal mine geologists. In study presented in this paper, the water inrush channels were divided into four basic water diversion structures: aquifer, rock fracture zone, fracture zone and goaf. The fluid flow characteristics in each water-conducting structure were investigated by laboratory tests, and multistructure and multisystem coupling flow analysis models of different water-conducting structures were established to describe the entire water inrush process. Based on the research of the water inrush flow paths, the analysis model of different water inrush space structures was established and applied to the prediction of mine water inrush inflow. The results prove that the conduction sequence of different water-conducting structures and the changing rule of permeability caused by stress changes before and after the peak have important influences on the characteristics of mine water-gushing. Influenced by the differences in geological structure and combined with rock mass RQD and fault conductivity characteristics and other mine exploration data, the prediction of mine water inflow can be realized accurately. Taking the water transmitting path in the multistructure as the research object of water inrush, breaking through the limitation of traditional stratigraphic structure division, the prediction of water inflow and the estimation of potentially flooded area was realized, and water bursting intensity was predicted. It is of great significance in making reasonable emergency plans.

Keywords

Acknowledgement

Funding was provided by the National Natural Science Foundation of China (52104203); Shandong Province Natural Science Foundation Project (ZR2020QE128; ZR2020ME102; ZR2021ME138); National Key R&D Program of China (2018YFC0604705); SDUST Research Fund (grant 2018TDJH102).

References

  1. Adhikary, D. (2012), "Numerical simulation of mine water inflow", Proceedings of the international society for rock mechanics, Stock-holm, Sweden. https://www.onepetro.org/conference-paper/ISRM-EUROCK-2012-0 
  2. Andric, P., Yin, B. and Curtin, W.A. (2019), "Solids Physics of Stress-dependence of generalized stacking fault energies", J. Mech. Phys. Solids, 122, 262-279. https://doi.org/10.1016/j.jmps.2018.09.007. 
  3. Battumur (2009), "Assessment of water supply options for proposed bayan airag gold-copper mine", Report: January 2009. 
  4. Blum, P., Mackay, R., Riley, M.S., Finkel, M., Barcelo, D., Barth, J.A.C. and Grathwohl, P. (2009), "Stochastic simulations of regional scale advective transport in fractured rock masses using block upscaled hydro-mechanical rock property data", J. Hydrology, 369(3), 318-325 https://doi.org/10.1016/j.jhydrol.2009.02.009. 
  5. Bouzourra, H., Bouhlila, R., Elango, L., Slama, F. and Ouslati, N. (2015), "Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations", Environ Sci. Pollut. Res., 22(4), 2643-2660. https://doi.org/10.1007/s11356-014-3428-0. 
  6. Chen, Y., Jiang, C., Yin, G., Zhang, D., Xing, H. and Wei, A. (2019b), "Permeability evolution under true triaxial stress conditions of Longmaxi shale in the Sichuan Basin", Southwest China. Powder Technol., 354, 601-614. https://doi.org/10.1016/j.powtec.2019.06.044. 
  7. Chen, Y., Lian, H., Liang, W., Yang, J., Nguyen, V.P. and Bordas, S.P.A. (2019a), "The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses", Int. J. Rock Mech. Min. Sci., 113, 59-71. https://doi.org/10.1016/j.ijrmms.2018.11.017 
  8. Chen, Y., Zhu, S.Y., Yang, C.W. and Xiao, S.J. (2021b), "Analysisof hydrochemical evolution in main discharge aquifers under mining disturbance and water source identification", Environ. Sci. Pollut. Res., 28, 26784-26793. https://doi.org/10.1007/s11356-021-12639-w. 
  9. Duan, M., Jiang, C., Gan, Q., Li, M., Peng, K. and Zhang, W. (2019), "Experimental investigation on the permeability, acoustic emission and energy dissipation of coal under tiered cyclic unloading", J. Nat. Gas Sci. Eng., https://doi.org/10.1016/j.jngse.2019.103054. 
  10. Gao, Y.F., Zhang, Y.P., Zhang, H.M. and Wang, S.F. (2009), "Research on expert system for risk assessment of water inrush from coal floor and its application", Chinese J. Rock Mech. Eng., 28(2), 253-258. 
  11. Ghyasvand, S., Fahimifar, A. and Nejad, F.M. (2022), "On the optimum design of reinforcement systems for old masonry railway tunnels", Geomech. Eng., 28(2), 145-155. https://doi.org/10.12989/gae.2022.28.2.145. 
  12. Goodman, R.E. and Shi, G. (1985), "Block theory and its application to rock engineering", Englewood Cliffs, New Jersey: Prentice-Hall. 
  13. Gu, Q.X., Huang, Z., Li, S.J., Zeng, W., Wu,Y. and Zhao, K. (2020), "An approachfor water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine", Environ. Sci. Pollut. Res., 27(34), 43163-43176. https://doi.org/10.1007/s11356-020-10225-0. 
  14. Guo, W.J., Zhang, S.C., Sun, W.B. and Chen, J.T. (2018), "Experimental and analysis research on water inrush catastrophe mode from coal seam floor in deep mining", J. China Coal Soc., 1, 219-227. https://doi.org/10.13225/j.cnki.jccs.2017.0774. 
  15. Hasiniaina, F., Zhou, J. and Guoyi, L. (2010), "Regional assessment of groundwater vulnerability in Tamtsag Basin", Mongolia using drastic model", J. Am. Sci., 6(11), 65-78
  16. Hoek, E. and Bray, J.W. (2005), "Rock slope engineering", 4th Ed., New York: Spon Press. 
  17. Hou, W., Cao, S. and Gao, X. (2016), "Study on water enrichment detection and water inrush of top slate rock layer in the first mining surfaceof Xin'an Coal Mine", China Min., 25(2), 270-272. 
  18. Hu, X., Wang, L., Lu, Y. and Yu, M. (2014), "Analysis of insidious fault activation and water inrush from the mining floor", Int. J. Min. Sci. Technol., 24(4), 477-483. https://doi.org/10.1016/j.ijmst.2014.05.010. 
  19. Huang, Z., Jiang, Z., Zhu, S., Qian, Z. and Cao, D. (2014), "Characterizing the hydraulic conductivity of rock formations between deep coal and aquifers using injection tests", Int. J. Rock Mech. Min. Sci., 71, 12-18. https://doi.org/10.1016/j.ijrmms.2014.06.017. 
  20. Huang, Z., Zeng, W. and Zhao, K. (2019), "Experimental investigation of the variations in hydraulic properties of a fault zone in Western Shandong", China. J. Hydrol., 574, 822-835. 
  21. Hudson, J.A. and Arrison, J.P. (1997), "Engineering rock mechanics", [S.l.]: Pergamon. 
  22. Ibishi, G.; Genis, M. and Yavuz, M. (2022), "Post-pillars design for safe exploitation at Trepca hard rock mine (Kosovo) based on numerical modelling", Geomech. Eng., 28(5), 463-475. https://doi.org/10.12989/gae.2022.28.5.463. 
  23. Karatela, E. and Taheri, A. (2018), "Three-dimensional hydromechanical model of borehole in fractured rock mass using discrete element method", J. Nat. Gas Sci. Eng., 53, 263-275. https://doi.org/10.1016/j.jngse.2018.02.032. 
  24. Khorasani, E., Amini, M., Hossaini, M.F. and Medley, E. (2019), "Evaluating the effects of the inclinations of rock blocks on the stability of bimrock slopes", Geomech. Eng., 17(3), 281-287. https://doi.org/10.12989/gae.2019.17.3.281. 
  25. Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 4(2), 151-159. https://doi.org/10.12989/gae.2018.4.2.151. 
  26. Komurlu, E., Kesimal, A. and Demir, S. (2016), "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. https://doi.org/10.12989/gae.2016.10.6.775. 
  27. Kong, D.Z. (2017), Study on activation and instability of overlying rock mass in old goaf under load .Shandong University of Science and Technology. 
  28. Kumsar, H., Aydan, O. and Ulusay, R. (2000), "Dynamic and static stability assessment of rock slopes against wedge failures", Rock Mech. Rock Eng., 33(1), 31-51. https://doi.org/10.1007/s006030050003. 
  29. Lawal, A.I.; Kwon, S., Aladejare, A.E. and Oniyide, G.O. (2022), "Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods", Geomech. Eng., 28(3), 313-324. https://doi.org/10.12989/gae.2022.28.3.313. 
  30. Li, B. and Wu, Q. (2019), "Catastrophic evolution of water inrush from a water-rich fault in front of roadway development: A case study of the Hongcai coal mine", Mine Water Environ., 3, 1-10. https://doi.org/10.13199/j.cnki.cst.2019.12.024. 
  31. Liu, S.L., Li, W.P. and Wang, Q.Q. (2017), "Height of the water-flowing fractured zone of the Jurassic coal seam in northwestern China", Mine Water Environ., 37(2), 312-321. https://doi.org/10.1007/s10230-017-0501-1. 
  32. Liu, W., Liu, S. and Liao, S.H..(2015), "Study on water inrush passage from floor affected by fault", Coal Eng., 12, 85-88. 
  33. Lu, Y. and Wang, L. (2015), "Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer", Comput. Geotech., 67, 157-171. 
  34. Lv, H.Y, Tang, Y.S., Zhang, L.F., Cheng, Z.B. and Zhang, Y.N. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355. 
  35. Ma, D., Li, Q., Cai, K., Zhang, J., Li, Z., Hou, W., Sun, Q., Li, M. and Du, F. (2023), "Understanding of water inrush disaster in weak geological structure of deep mining engineering: Seepage erosion model considering tortuosity", J. Central South Univ., 30(2), 517-529. https://doi.org/10.1007/s11771-023-5261-4. 
  36. Ma, D., Rezania, M., Yu, H.S. and Bai, H.B. (2017), "Variations of hydraulic properties of granular sandstones during water inrush: effect of small particle migration", Eng. Geol., 217, 61-70. https://doi.org/10.1016/j.enggeo.2016.12.006. 
  37. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ali, H.F.H., Ibrahim, H.H. and Rashidi, S. (2022), "Forecasting tunnel path geology using Gaussian process regression", Geomech. Eng., 28(4), 359-374, https://doi.org/10.12989/gae.2022.28.4.359. 
  38. Mandal, A., Basantaray, A.K., Chandroth, A. and Mishra, U. (2019), "Integrated geophysical investigation to map shallow surface alteration/fracture zones of Atri and Tarabalo hot springs", Geothermics, 77, 24-33. https://doi.org/10.1016/j.geothermics.2018.08.007. 
  39. Maruvanchery, V. and Kim, E. (2017), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057. 
  40. Munoz, H., Taheri, A. and Chanda, E.K. (2016), "Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation", Rock Mech. Eng. Rock, 49(7), 2541-2554. https://doi.org/10.1007/s00603-016-0935-y. 
  41. Priest, S D. and Hudson, J.A. (1976), "Discontinuity spacings in rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 13(5), 135-148. https://doi.org/10.1016/0148-9062(76)90818-4. 
  42. Samanta, M., Punetha, P. and Sharma, M. (2018), "Effect of roughness on interface shear behavior of sand with steel and concrete surface", Geomech. Eng., 14(4), 387-398. https://doi.org/10.12989/gae.2018.14.4.387. 
  43. Shao, J.L. (2022), Research on Seepage Catastrophic Characteristics and Water Inrush Mechanism of Hidden Fractures in Coal Seam Floor under Mining Effect. Shandong University of Science and Technology. 
  44. Shi, L. (2009), "Summary of research on mechanism of water-inrush from seam floor", J. Shandong Univ. Sci. Technol. Nat. Sci., 3, 17-23. (in Chinese) 
  45. Sun, K.M. and Xin, L.W. (2016), "Seepage law of rough fracture during loading-unloading process considering 3D topograply characteristics", Rock Soil Mech., 37(2), 161-166. 
  46. Sweetenham M.G., Maxwell, R.M. and Santi, P.M. (2017), "Assessing the timing and magnitude of precipitation-induced seepage into tunnels bored through fractured rock", Tunn. Undergr. Sp. Tech., 65, 62-75. https://doi.org/10.1016/j.tust.2017.02.003. 
  47. Tatone, B.S.A. and Grasselli, G. (2015), "A calibration procedure for twodimensional laboratory-scale hybrid finite-discrete element simulations", Int. J. Rock Mech. Min. Sci., 75, 56-72. https://doi.org/10.1016/j.ijrmms.2015.01.011. 
  48. Vaziri, M.R., Tavakoli, H. and Bahaaddini, M. (2022), "2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests", Geomech. Eng., 28(2), 117-133. https://doi.org/10.12989/gae.2022.28.2.117. 
  49. Wang, J., Yang, Y. and Kong, D. (2016), "Failure mechanism and control technology of Longwall coal face in large-cutting-height mining method", Int. J. Min. Sci. Technol., 26(1), 111-118. https://doi.org/CNKI:SUN:ZHKD.0.2016-01-017. 
  50. Wang, Q., Gao, H., Yu, H., Jiang, B. and Liu, B. (2019), "Method for measuring rock mass characteristics and evaluating the grouting-rReinforced effect based on digital drilling", Rock Mech. Eng. Rock, 52(3), 841-851. https://doi.org/10.1007/s00603-018-1624-9. 
  51. Wang, Z., Wei, L., Bi, L., Qiao, L., Liu, R. and Jie, L. (2018), "Estimation of the REV size and equivalent permeability coefficient of fractured rock masses with an emphasis on comparing the radial and unidirectional flow configurations.rock mechanics", Eng. Rock, 6, 1-15. https://doi.org/10.1007/s00603-018-1422-4. 
  52. Wu, C., Chu, J., Wu, S. and Hong, Y. (2019), "3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction", Eng. Geol., 24(9), 23-30. 
  53. Wu, J. (2014), "Progress problems and prospects of prevention and control technology of mine water and reutilization in China", J. China Coal Soc., 39(5), 795-805. https://doi.org/10.13225/j.cnki.jccs.2014.0478. 
  54. Wu, J., Cui, F.P., Zhao, S.Q., Liu, S.J., Ceng, Y.F. and Gu, Y.W. (2013), "Type classification and main characteristics of mine water disasters", J. China Coal Soc., 38(4), 561-565. https://doi.org/10.13225/j.cnki.jccs.2013.04.015. 
  55. Xing, H.L. and Makinouchi, A. (2000), "A node-to-point contact element strategy and its applications", RIKEN REVIEW, 35-39 
  56. Xing, H.L., Makinouchi, A. and Mora, P. (2007), "Finite element modeling of interacting fault systems", Phys. Earth Interiors Planetary, 163(1-4), 106-121. https://doi.org/10.1016/j.pepi.2007.05.006. 
  57. Yang, J., Jiabin, Dong, Feng Gao , Jianguo Wang (2019), "Evaluation of water permeability of rough fractures based on a self-affine fractal model and optimized segmentation algorithm", Adv. Water Resour., 129, 99-111. https://doi.org/10.1016/j.advwatres.2019.05.007. 
  58. Yang, T., Tang, C., Tan, Z., Zhu, W. and Feng, Q. (2007), "State of the art of inrush models in rock mass failure and developing trend for prediction and forecast of ground water inrush", Chinese J. Rock Mech. Eng., 26(2), 268-277. 
  59. Yang, T.H., Shi, W.H., Liu, H.L., Yang, B., Xin, Y. and Liu, Z.B. (2017), "A non - linear flow model based on flow translation and its application in the mechanism analysis of water inrush through collapse pillar", J. China Coal Soc., 42(2), 315-321. https://doi.org/10.13225/j.cnki.jccs.2016.6008. 
  60. Yao, B., Wang, L., Wei, J., Li, Z. and Liu, X. (2018), "A deformation-seepage-erosion coupling model for water outburst of Karst collapse pillar and its application", J. China Coal Soc., 43(7), 2007-2013. https://doi.org/10.13225/j.cnki.jccs.2017.1276. 
  61. Yin, L. (2011), "Basic experimental study on water-inrush mechanism of floor in deep mining", Shandong Univ. Sci. Technol., https://doi.org/10.7666/d.D301269. 
  62. Yin, L., Guo, W. and Lu, C. (2017), "Patterns of the water-inrush hazard in the floor strata in deep mines and its catastrophic characteristics", J. Min. Saf. Eng., 34(3), 459-463. https://doi.org/10.13545/j.cnki.jmse.2017.03.09. 
  63. Yosseff, H.H. (2003), "Keyblock stability in seismically active rock slopes-Snake Path Cliff", Masada. J. Geotech. Geoenviron. Eng., 129(8), 697-705. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(697) 
  64. Yuan, F., Ma, K., Zhuang, D., Wang, Z. and Sun, X. (2019), "Preparation mechanism of water inrush channels in bottom floor of Dongjiahe Coal Mine based on microseismic monitoring", J. China Coal Soc., 44(6), 1846-1856. https://doi.org/10.13225/j.cnki.jccs.2018.0941. 
  65. Zhang, B., Bai, H. and Zhang, K. (2016), "Research on permeability characteristics of karst collapse column fillings in complete stress-strain process", J. Min. Saf. Eng., 33(4), 734-740. https://doi.org/10.13545/j.cnki.jmse.2016.04.025. 
  66. Zhang, J., Zhang, Y. and Liu, T. (1997), "Rock mass seepage and the coal floor water bursting", Beijing: Geological Publishing House 
  67. Zhang, W., Yuan, J., Wang, Z., et al. (2017), "An experimental study on compressive shear seepage laws of mining-induced fractured rock mass", Rock Soil Mech., 38(9), 2473-2479. 
  68. Zhang, Y. (2009), "Numerical simulation on forecasting water in flow and characteristic of over burden failure based on fluid-solid coupling theory", J. China Coal Soc., 34(5), 610-613. 
  69. Zhang, Y., Zhang, C. and Zhao, F. (2015), "Dynamic evolution rules of mining-induced fractures in different floor area of short-distance coal seams", J. China Coal Soc., 40(4), 786-792. https://doi.org/10.13225/j.cnki.jccs.2014.3011. 
  70. Zhao J., Zhou, H., Xue, D., Su, T., Deng, H. and Yang, H. (2019), "Expansion law of seepage path in the concealed structural floor of coal seam in deep confined water", J. China Coal Soc., 44(6), 1836-1845. https://doi.org/10.13225/j.cnki.jccs.2018.0844. 
  71. Zhao, J., Jiang, N., Yin, L. and Bai, L. (2019), "The effects of mining subsidence and drainage improvements on a waterlogged area", Bull. Eng. Geol. Environ., 78(5). https://doi.org/10.1007/s10064-018-1356-9. 
  72. Zhao, J., Juntao, C., Huilin, X., Zhao, Z. and Xinguo, Z. (2021), "Dynamic mechanical response and movement evolution characteristics of fault systems in the coal mining process", Pure Appl. Geophys., 179(1). https://doi.org/10.1007/s00024-021-02905-w. 
  73. Zhao, J., Liu, Q., Jiang, C. and Wang, D. (2022), "Application of rock mass index in the prediction of mine water inrush and grouting quantity", Geomech. Eng., 30(6), 503-515. https://doi.org/10.12989/gae.2022.30.6.503. 
  74. Zhao, J., Yin, L. and Guo, W. (2018a), "Influence of three-dimensional roughness of rock fracture on seepage characteristics based on the digital image technology", Arab J. Geosci., 11(778), 1-12. 
  75. Zhao, J., Yin, L. and Guo, W. (2018b), "Stress-seepage coupling of cataclastic rock masses based on digital image technologies", Rock Mech. Rock Eng., 51(8), 2355-2372. https://doi.org/10.1007/s00603-018-1474-5. 
  76. Zhou, F., Sun, W.B., Shao, J.L., Kong, L.J. and Geng, X.Y. (2020), "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.