DOI QR코드

DOI QR Code

Thermal Gradient Change of T-shaped Mg Alloy Specimen Exposed to Electropulses

전류펄스 인가된 T자형 Mg 합금 시편의 온도 구배 변화

  • J.H. Song ;
  • D.J. Park ;
  • S. Cheon ;
  • J. Yu ;
  • S.H. Lee ;
  • T. Lee (School of Mechanical Engineering, Pusan National University)
  • 송종한 (부산대학교 기계공학부) ;
  • 박동준 (부산대학교 기계공학부) ;
  • 천세호 (부산대학교 기계공학부) ;
  • 유진영 (부산대학교 기계공학부) ;
  • 이성호 (부산대학교 기계공학부) ;
  • 이태경 (부산대학교 기계공학부)
  • Received : 2024.06.26
  • Accepted : 2024.07.09
  • Published : 2024.08.01

Abstract

Electropulsing treatment (EPT) has been developed as an alternative to furnace heat treatment (FHT) to exploit its engineering advantages in rapidly annealing metallic materials. Conventionally, the separation of thermal and athermal effects of EPT has been attempted by comparing EPT and FHT specimens processed under identical temperature and duration. However, this method inherently introduces experimental and measurement errors. This study proposes a novel approach to distinguish the thermal and athermal effects of EPT-processed metals using T-shaped specimen with two observation points, namely 'C' and 'D'. For verification, the thermal gradient of T-shaped Mg alloys was examined under various EPT conditions. The points C exhibited higher temperatures compared to those at points D at a given electric current density, because only the former received both thermal and athermal effects. It was confirmed from twelve specimens that the point C at an electric current density of 65 A·mm-2 and point D at 70 A·mm-2 exhibited similar temperatures. This developed method is expected to reduce measurement errors in distinguishing thermal and athermal effects, thus providing a deeper understanding of their quantitative contributions in future studies.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음

References

  1. M. Kim, S.H. Lee, J. Yu, S. Cheon, S. Byun, C.S. Lee, T. Lee, 2023, Enhanced kinetics of microstructural evolution in Ti-6Al-4V through electropulsing treatment, J. Mater. Res. Technol. Vol. 26, pp. 8500~8508. https://doi.org/10.1016/j.jmrt.2023.09.170 
  2. S.H. Lee, J. Yu, S. Cheon, J.G. Kim, T. Lee, 2024, Exploiting Electropulses to Optimize Microstructure in Ti-6Al-4V Fabricated by Selective Laser Melting, Met. Mater. Int. Vol. 30, pp. 886~894. https://doi.org/10.1007/s12540-023-01544-1 
  3. M. Lee, J. Yu, M.H. Bae, J.W. Won, T. Lee, 2021, Accelerated recrystallization behavior of commercially pure titanium subjected to an alternating-current electropulse, J. Mater. Res. Technol. Vol. 15, pp. 5706~5711. https://doi.org/10.1016/j.jmrt.2021.11.045 
  4. S.J. Oh, J. Yu, S. Cheon, S.H. Lee, S.-Y. Lee, T. Lee, 2023, Anisotropic microstructural evolutions of extruded ZK60 Mg alloy subjected to electropulsing treatment, J. Mater. Res. Technol. Vol. 26, pp. 3322~3331. https://doi.org/10.1016/j.jmrt.2023.08.103 
  5. H.-J. Jeong, M.-J. Kim, S.-J. Choi, J.-W. Park, H. Choi, V.T. Luu, S.-T. Hong, H.N. Han, 2020, Microstructure reset-based self-healing method using sub-second electric pulsing for metallic materials, Appl. Mater. Today Vol. 20, p. 100755. https://doi.org/10.1016/j.apmt.2020.100755 
  6. M.-J. Kim, S. Yoon, S. Park, H.-J. Jeong, J.-W. Park, K. Kim, J. Jo, T. Heo, S.-T. Hong, S.H. Cho, Y.-K. Kwon, I.-S. Choi, M. Kim, H.N. Han, 2020, Elucidating the origin of electroplasticity in metallic materials, Appl. Mater. Today Vol. 21, pp. 100874~100874. https://doi.org/10.1016/j.apmt.2020.100874 
  7. G. Zhao, J. Fan, H. Zhang, Q. Zhang, J. Yang, H. Dong, B. Xu, 2018, Exceptional mechanical properties of ultra-fine grain AZ31 alloy by the combined processing of ECAP, rolling and EPT, Mater. Sci. Eng. A Vol. 731, pp. 54~60. https://doi.org/10.1016/j.msea.2018.05.112 
  8. Y. Liu, J. Fan, H. Zhang, W. Jin, H. Dong, B. Xu, 2015, Recrystallization and microstructure evolution of the rolled Mg-3Al-1Zn alloy strips under electropulsing treatment, J. Alloy. Compd. Vol. 622, pp. 229~235. https://doi.org/10.1016/j.jallcom.2014.10.062 
  9. Z. Lu, C. Guo, P. Li, Z. Wang, Y. Chang, G. Tang, F. Jiang, 2017, Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al3Ti alloy, J. Alloy. Compd. Vol. 708, pp. 834~843. https://doi.org/10.1016/j.jallcom.2017.03.085 
  10. K. Chen, L. Zhan, W. Yu, 2021, Rapidly modifying microstructure and mechanical properties of AA7150 Al alloy processed with electropulsing treatment, J. Mater. Sci. Technol. Vol. 95, pp. 172~179. https://doi.org/10.1016/j.jmst.2021.03.060 
  11. X. Li, B. Hu, Q. Guo, X. Wu, H. Sui, L. Xiang, H. Luo, 2024, Characterizing changes in microstructures, mechanical and magnetic properties of non-oriented silicon steel due to pulsed current, Mater. Charact. Vol. 211, p. 113904. https://doi.org/10.1016/j.matchar.2024.113904 
  12. C. L. Yang, H. J. Yang, Z. J. Zhang, Z. F. Zhang, 2018, Recovery of tensile properties of twinning-induced plasticity steel via electropulsing induced void healing, Scr. Mater. Vol. 147, pp. 88~92. https://doi.org/10.1016/j.scriptamat.2018.01.008 
  13. Z. Deng, X. Li, S. Wang, X. Li, X. Xiao, 2022, Improved mechanical properties of Mg-1Gd alloy by cold rolling and electropulse treatment, Mater. Lett. Vol. 327, p. 133012. https://doi.org/10.1016/j.matlet.2022.133012 
  14. J. Yu, M. Lee, Y. H. Moon, Y. Noh, T. Lee, 2020, Prediction of Electropulse-Induced Nonlinear Temperature Variation of Mg Alloy Based on Machine Learning, Korean J. Met. Mater. Vol. 58, pp. 413~422. http://doi.org/10.3365/KJMM.2020.58.6.413 
  15. H. Yang, L. Huang, M. Zhan, 2010, Coupled thermomechanical FE simulation of the hot splitting spinning process of magnesium alloy AZ31, Comput. Mater. Sci. Vol. 47, pp. 857~866. https://doi.org/10.1016/j.commatsci.2009.11.014