DOI QR코드

DOI QR Code

Optimization of MIL-53 Metal-organic Framework Coatings for Enhanced Durability in Carbon Dioxide Capture

이산화탄소 포집 성능 향상을 위한 MIL-53 금속-유기 골격체 코팅의 최적화

  • Dae-Hyeon Kim ;
  • Sung-Jun Lee ;
  • Dong-Gyu Ahn ;
  • Chang-Lae Kim
  • 김대현 (조선대학교 기계공학과) ;
  • 이성준 (조선대학교 기계공학과) ;
  • 안동규 (조선대학교 기계공학과) ;
  • 김창래 (조선대학교 기계공학과)
  • Received : 2024.07.15
  • Accepted : 2024.07.17
  • Published : 2024.08.01

Abstract

This study aimed to optimize the MIL-53 metal-organic framework coatings for enhanced durability in carbon dioxide capture applications. We synthesized MIL-53 powders using a hydrothermal method and deposited them on stainless-steel substrates by spin coating at various speeds, ranging from 300 to 2,000 rpm. The microstructure, surface properties, and tribological characteristics of the coatings were analyzed systematically. The results indicated that the spin speed significantly impacted the coating uniformity and defect formation. Coatings prepared at moderate speeds of 500 to 1,000 rpm exhibited optimal thickness and density, resulting in superior wear resistance. The tribological tests revealed that the coatings prepared at 700 to 1000 rpm had the lowest wear rates. These findings offer valuable insights for the development of durable MOF-based coatings for carbon dioxide capture and other applications requiring long-term stability under mechanical stress.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00219369). This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (RS-2024-00349019).

References

  1. B. Dziejarski, J. Serafin, K. Andersson, R. Krzyzynska, 2023, CO2 capture materials: a review of current trends and future challenges, Mater. Today Sustain. Vol. 24, pp. 100483. https://doi.org/10.1016/j.mtsust.2023.100483 
  2. M. Hanifa, R. Agarwal, U. Sharma, P. Thapliyal, L. Singh, 2023, A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies, J. CO2 Util. Vol. 67, pp. 102292. https://doi.org/10.1016/j.jcou.2022.102292 
  3. W. Cao, H. Xu, X. Zhang, W. Xiang, G. Qi, L. Wan, B. Gao, 2023, Novel post-treatment of ultrasound assisting with acid washing enhance lignin-based biochar for CO2 capture: adsorption performance and mechanism, Chem. Eng. J. Vol. 471, pp. 144523. https://doi.org/10.1016/j.cej.2023.144523 
  4. A.M. Najafi, S. Soltanali, H. Ghassabzadeh, 2023, Enhancing the CO2, CH4, and N2 adsorption and kinetic performance on FAU zeolites for CO2 capture from flue gas by metal incorporation technique, Chem. Eng. J. Vol. 468, pp. 143719. https://doi.org/10.1016/j.cej.2023.143719 
  5. X. Li, R. Li, K. Peng, K. Zhao, M. Bai, H. Li, W. Gao, Z. Gong, 2023, Amine-impregnated porous carbon-silica sheets derived from vermiculite with superior adsorption capability and cyclic stability for CO2 capture, Chem. Eng. J. Vol. 464, pp. 142662. https://doi.org/10.1016/j.cej.2023.142662 
  6. M. Zhao, Y. Yang, X.-S. Gu, 2023, MOF based CO2 capture: Adsorption and membrane separation, Inorg. Chem. Commun. Vol. 152, pp. 110722. https://doi.org/10.1016/j.inoche.2023.110722 
  7. S.B. Peh, S. Farooq, D. Zhao, 2023, Technoeconomic analysis of MOF-based adsorption cycles for postcombustion CO2 capture from wet flue gas, Chem. Eng. Sci. Vol. 268, pp. 118390. https://doi.org/10.1016/j.ces.2022.118390 
  8. S. Gaikwad, S. Han, 2023, Shaping metal-organic framework (MOF) with activated carbon and silica powder materials for CO2 capture, J. Environ. Chem. Eng., Vol. 11, pp. 109593. https://doi.org/10.1016/j.jece.2023.109593 
  9. H. An, W. Tian, X. Lu, H. Yuan, L. Yang, H. Zhang, H. Shen, H. Bai, 2023, Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74, Chem. Eng. J. Vol. 469, pp. 144052. https://doi.org/10.1016/j.cej.2023.144052 
  10. Y. He, P. Boone, A.R. Lieber, Z. Tong, P. Das, K.M. Hornbostel, C.E. Wilmer, N.L. Rosi, 2023, Implementation of a Core-Shell Design Approach for Constructing MOFs for CO2 Capture, ACS Appl. Mater. Interfaces Vol. 15, pp. 23337-23342. https://doi.org/10.1021/acsami.3c03457 
  11. F. Parsapour, M. Moradi, V. Safarifard, S. Sojdeh, 2024, Polymer/MOF composites for metal-ion batteries: A mini review, J. Energy Storage Vol. 82, pp. 110487. https://doi.org/10.1016/j.est.2024.110487 
  12. G. Zhang, G. Xie, L. Si, S. Wen, D. Guo, 2017, Ultralow friction self-lubricating nanocomposites with mesoporous metal-organic frameworks as smart nanocontainers for lubricants, ACS Appl. Mater. Interfaces Vol. 9, pp. 38146-38152. https://doi.org/10.1021/acsami.7b12591 
  13. X. Yang, Y. Wang, W. Cao, J. Zheng, C. Liu, B. Fan, X. Qi, 2024, Flexible metal-organic frameworks based self-lubricating composite, Friction Vol. 12, pp. 1816-1827. https://doi.org/10.1007/s40544-023-0857-0 
  14. S.J. Lee, C.L. Kim, 2023, Highly flexible, stretchable, durable conductive electrode for human-body-attachable wearable sensor application, Polym. Test., Vol. 122, pp. 108018. https://doi.org/10.1016/j.polymertesting.2023.108018 
  15. S.J. Lee, G.M. Kim, C.L. Kim, 2023, Design and evaluation of micro-sized glass bubble embedded PDMS composite for application to haptic forceps, Polym. Test., Vol. 117, pp. 107855. https://doi.org/10.1016/j.polymertesting.2022.107855 
  16. T. Van Tran, A. Jalil, D.T.C. Nguyen, M. Alhassan, W. Nabgan, A.N.T. Cao, T.M. Nguyen, D.-V.N. Vo, 2023, A critical review on the synthesis of NH2-MIL-53 (Al) based materials for detection and removal of hazardous pollutants, Environ. Res. Vol. 216, pp. 114422. https://doi.org/10.1016/j.envres.2022.114422 
  17. D.M. Maklavany, Z. Rouzitalab, M. Bazmi, M. Askarieh, A. Nabavi-Pelesaraei, 2023, Eco-environmental analysis of different routes for the synthesis of MIL-53 (Fe): an integrated life cycle assessment and life cycle cost approaches, ACS Sustain. Chem. Eng. Vol. 11, pp. 9816-9832. https://doi.org/10.1021/acssuschemeng.3c02199 
  18. T. Xie, H. Wang, K. Chen, F. Li, S. Zhao, H. Sun, X. Yang, Y. Hou, P. Li, Q.J. Niu, 2023, High-performance polyethyleneimine based reverse osmosis membrane fabricated via spin-coating technology, J. Membr. Sci. Vol. 668, pp. 121248. https://doi.org/10.1016/j.memsci.2022.121248 
  19. J.W. Song, L.W. Fan, 2023, Understanding the effects of surface roughness on the temperature and pressure relevancy of water contact angles, Colloids Surf. A Physicochem. Eng. Asp., Vol. 656, pp. 130391. https://doi.org/10.1016/j.colsurfa.2022.130391 
  20. R. Jensen, Z. Farhat, M.A. Islam, G. Jarjoura, 2022, Effect of coating thickness on wear behaviour of monolithic Ni-P and Ni-P-NiTi composite coatings, Solids Vol. 3, pp. 620-642. https://doi.org/10.3390/solids3040039