References
- D. R. Labarthe, Epidemiology and Prevention of Cardiovascular Diseases: A Global Challenge, Jones & Bartlett Publishers, 2010.
- A. P. Kengne, A. E. Moran, K. Sliwa, and F. Mbanya, Cardiovascular diseases and diabetes as economic and developmental challenges in Africa, Prog. Cardiovasc. Dis., Vol. 56, No. 3, pp. 302-313, 2013. https://doi.org/10.1016/j.pcad.2013.10.011
- Y. Khan, C. S. Pythian, and I. Jaswinder, Machine learning techniques for heart disease datasets: A survey, in Proc. 2019 11th Int. Conf. Mach. Learn. Comput., pp. 27-35, 2019.
- K. K. L. Wong, G. Fortino, and D. Abbott, Deep learning-based cardiovascular image diagnosis: a promising challenge, Future Gener. Comput. Syst., Vol. 110, pp. 802-811, 2020. https://doi.org/10.1016/j.future.2019.09.047
- N. Kagiyama, R. Shrestha, S. Farjo, and P. Sengupta, Artificial intelligence: practical primer for clinical research in cardiovascular disease, J. Am. Heart Assoc., Vol. 8, No. 17, e012788, 2019.
- S. S. Yadav, M. Jadhav, S. Nagrale, and N. Patil, Application of machine learning for the detection of heart disease, in Proc. 2020 2nd Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA), pp. 165-172, 2020.
- A. S. Abdullah and R. Rajalaxmi, A data mining model for predicting the coronary heart disease using random forest classifier, in Proc. Int. Conf. Recent Trends Comput. Methods, Commun. Controls, 2012.
- A. H. Alkeshuosh, M. Z. Moghadam, I. Al Mansoori, and M. Abdar, Using PSO algorithm for producing best rules in diagnosis of heart disease, in Proc. 2017 Int. Conf. Comput. Appl. (ICCA), 2017.
- N. Al-Milli, Backpropagation neural network for prediction of heart disease, J. Theor. Appl. Inf. Technol., Vol. 56, No. 1, pp. 131-135, 2013.
- M. A. Khan, M. Umair, M. A. S. Choudhry, and M. K. Chattha, An optimized ensemble prediction model using AutoML based on soft voting classifier for network intrusion detection, J. Netw. Comput. Appl., Vol. 212, 103560, 2023.
- S. Karlos, G. Kostopoulos, and S. Kotsiantis, A soft-voting ensemble based co-training scheme using static selection for binary classification problems, Algorithms, Vol. 13, No. 1, 26, 2020.
- S. Kumari, D. Kumar, and M. Mittal, An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier, Int. J. Cogn. Comput. Eng., Vol. 2, pp. 40-46, 2021. https://doi.org/10.1016/j.ijcce.2021.01.001
- M. Shahhosseini, G. Hu, and H. Pham, Optimizing ensemble weights and hyperparameters of machine learning models for regression problems, Mach. Learn. Appl., Vol. 7, 100251, 2022.
- S. Kumari, D. Kumar, and M. Mittal, An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier, Int. J. Cogn. Comput. Eng., Vol. 2, pp. 40-46, 2021. https://doi.org/10.1016/j.ijcce.2021.01.001
- A. Ozcift, Medical sentiment analysis based on soft voting ensemble algorithm, Yonetim Bilisim Sist. Derg., Vol. 6, No. 1, pp. 42-50, 2020.
- A. Onan, S. Korukoglu, and H. Bulut, A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification, Expert Syst. Appl., Vol. 62, pp. 1-16, 2016. https://doi.org/10.1016/j.eswa.2016.06.005
- D. Yang, B. Xiao, M. Cao, and H. Shen, A new hybrid credit scoring ensemble model with feature enhancement and soft voting weight optimization, Expert Syst. Appl., Vol. 238, 122101, 2024.
- Heart Disease Cleveland; https://www.kaggle.com/datasets/ritwikb3/heart-disease-cleveland.
- A. Gunawardana and G. Shani, A survey of accuracy evaluation metrics of recommendation tasks, J. Mach. Learn. Res., Vol. 10, No. 12, 2009.
- B. Juba and H. S. Le, Precision-recall versus accuracy and the role of large data sets, in Proc. AAAI Conf. Artif. Intell., Vol. 33, No. 01, pp. 4039-4048, July 2019.
- E. J. Michaud, Z. Liu, and M. Tegmark, Precision Machine Learning, Entropy, Vol. 25, No. 1, pp. 175, 2023.
- D. Chicco and G. Jurman, The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC Genomics, Vol. 21, pp. 1-13, 2020. https://doi.org/10.1186/s12864-019-6419-1
- J. Fan, S. Upadhye, and A. Worster, Understanding receiver operating characteristic (ROC) curves, Can. J. Emerg. Med., Vol. 8, No. 1, pp. 19-20, 2006. https://doi.org/10.1017/S1481803500013336
- H. I. Hahn, Comparative Analysis of CNN Techniques designed for Rotated Object Classification, Int. J. Internet Broadcast. Commun., Vol. 24, No. 1, 2024.