Acknowledgement
All the authors are thankful to the Reviewers and Editors for their suggestions and remarks on the first draft of the manuscript.
References
- J. Anuradha Eldered & P. Veeramani: Proximal pointwise contraction. Topol. Appl. 156 (2009), no. 18, 2942-2948. https://doi.org/10.1016/j.topol.2009.01.017
- A. Anthony Eldred & P. Veeramani: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
- A.D. Arvanitakis: A proof of the generalized Banach contraction conjecture. Proc. Amer. Math. Soc. 131 (2003), no. 12, 3647-3656. https://doi.org/10.2307/1194510
- B.S. Choudhury & K.P. Das: A new contraction principle in Menger spaces. Acta Mathematica Sinica 24 (2008), no. 8, 1379-1386. https://doi.org/ 10.1007/s10114-007-6509-x
- C. Mongkolkeha & P. Kumam: Fixed point and common fixed-point theorems for generalized weak contraction mappings of integral type in modular spaces. Internat. J. Math. & Math. Sci. 2011 (2011), Article ID 705943, 12 pages.
- C. Mongkolkeha & P. Kumam: Fixed point theorems for generalized asymptotic pointwise ρ-contraction mappings involving orbits in modular function spaces. Applied Mathematics Letters 25 (2012), no. 10, 1285-1290. https://doi.org/ 10.1016/j.aml.2011.11.027
- D.W. Boyd & J.S.W. Wong: On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969), 458-464. https://doi.org/ 10.1090/S0002-9939-1969-0239559-9
- G. Prasad & D. Khantwal: Fixed points of JS-contractive mappings with applications. J. Anal. 31 (2023), 2687-2701. https://doi.org/10.1007/s41478-023-00598-z
- G. Prasad & R.C. Dimri: Fixed point theorems for weakly contractive mappings in relational metric spaces with an application. J. Anal. 26 (2018), 151-162. https://doi.org/10.1007/s41478-018-0076-7
- G. Prasad & R.C. Dimri: Coincidence theorems in new generalized metric spaces under locally g-transitive binary relation. J. Indian Math. Soc. 85 (2018), no. 3-4, 396-410. https://doi.org/10.18311/jims/2018/16383
- J.B. Prolla: Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 5 (1982-1983), 449-455. https://doi.org/10.1080/01630568308816149
- K. Fan: Extensions of two fixed point theorems of F. E. Browder. Mathematische Zeitschrift 112 (1969), no. 3, 234-240. https://api.semanticscholar.org/CorpusID:119627163 https://doi.org/10.1007/BF01110225
- K. Ungchittrakool: A Best Proximity Point Theorem for Generalized Non-Self-Kannan-Type and Chatterjea-Type Mappings and Lipschitzian Mappings in Complete Metric Spaces. Journal of Function Spaces 2016 (2016), no. 1-2, 1-11. https://doi.org/10.1155/2016/9321082
- N. Hussain, A.Latif & P. Salimi: Best Proximity Point Result in G-Metric Space. Abstract and Applied Analysis 2014 (2014) Artical ID 837943, 8. http://dx.doi.org/10.1155/2014/837943
- N. Dubey, S. Shukla & R. Shukla: On Graphical Symmetric Spaces, Fixed-Point Theorems and the Existence of Positive Solution of Fractional Periodic Boundary Value Problems. Symmetry 16 (2024), no. 2, 182. https://doi.org/10.3390/sym16020182
- S. Banach: Sur les operations dans les ensembles abstraits et leur application aux equations integrals. Fundam. Math. 3 (1922), 133-181. https://api.semanticscholar.org/CorpusID:118543265 https://doi.org/10.4064/fm-3-1-133-181
- S. Sadiq Basha: Best proximity point theorems. Journal of Approximation theory 163 (2011), no. 11, 1772-1781. https://doi.org/10.1016/j.jat.2011.06.012
- S. Reich: Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 62 (1978), 104-113. https://api.semanticscholar.org/CorpusID:21665412 https://doi.org/10.1016/0022-247X(78)90222-6
- S. Shukla, N. Dubey, J-J. Minana: Vector-Valued Fuzzy Metric Spaces and Fixed Point Theorems. Axioms 13 (2024), no. 4, 252. https://doi.org/10.3390/axioms13040252
- S. Shukla, S. Rai & R. Shukla: Some Fixed Point Theorems for α-Admissible Mappings in Complex-Valued Fuzzy Metric Spaces. Symmetry 15(9) (2023), 1797. https://doi.org/10.3390/sym15091797
- S. Shukla & S. Rai: Caristi type fixed point theorems in 1-M-complete fuzzy metric-like spaces. The Journal of Analysis 31 (2023), no. 3, 2247-2263. https://doi.org/10.1007/s41478-023-00562-x
- S. Shukla, N. Dubey, R. Shukla & I. Mezn'ik: Coincidence point of Edelstein type mappings in fuzzy metric spaces and application to the stability of dynamic markets. Axioms 12 (2023), no. 9, 854. https://doi.org/10.3390/axioms12090854
- V.M. Sehgal & S.P. Singh: A generalization to multifunctions of fans best approximation theorem. Proc. Amer. Math. Soc. 102 (1988), 534-537. https://doi.org/10.1090/S0002-9939-1988-0928974-5
- V.M. Sehgal & S.P. Singh: A theorem on best approximations. Numer. Funct. Anal. Optim. 10 (1988), 181-184. https://doi.org/10.1080/01630568908816298
- V. Vetrivel, P. Veeramani & P. Bhattacharyya: Some extensions of fans best approximation theorem. Numer. Funct. Anal. Optim. 13 (1992), 397-402. https://doi.org/10.1080/01630569208816486
- W.A. Kirk, P.S. Srinivasan & P. Veeramani: Fixed points for mappings satisfying cyclic contractive conditions. Fixed Point Theory 4 (2003), 79-89.
- W Sanhan, C. Mongkolkeha & P. Kumam: Generalized Proximalψ -Contraction Mappings and Best Proximity Points. Abstract and Applied Analysis 2012 (2012), Article ID 896912, 19. https://doi.org/10.1155/2012/896912
- W. Sintunavarat & P. Kumam: Gregus-type common fixed-point theorems for tangential multivalued mappings of integral type in metric spaces. Internat. J. Math. & Math. Sci. 2011 (2011), Article ID 923458, 12 pages. https://doi.org/10.1155/2011/923458
- W. Sintunavarat & P. Kumam: Weak condition for generalized multi-valued (f, α, β) weak contraction mappings. Applied Mathematics Letters 24 (2011), no. 4, 460-465. https://api.semanticscholar.org/CorpusID:31271775 https://doi.org/10.1016/j.aml.2010.10.042
- X. Zhang: Common fixed-point theorems for some new generalized contractive type mappings. J. Math. Anal. Appl. 333 (2007), no. 2, 780-786. https://doi.org/10.1016/j.jmaa.2006.11.028