DOI QR코드

DOI QR Code

The Effects of Virus and Viroid Infections on the Growth and Fruit Quality of 'Hongro' Apples

사과 바이러스와 바이로이드 감염이 '홍로' 사과의 수체 및 과실 특성에 미치는 영향

  • Sang-Yun Cho (National institute of Horticultural and Herbal Science, Fruit Foundation Division) ;
  • Hyun Ran Kim (National institute of Horticultural and Herbal Science, Fruit Foundation Division) ;
  • Kang Hee Cho (Research Policy Bureau, Rural Development Administration) ;
  • Se Hee Kim (National institute of Horticultural and Herbal Science, Fruit Foundation Division) ;
  • Byeonghyeon Yun (National institute of Horticultural and Herbal Science, Fruit Foundation Division) ;
  • Sewon Oh (National institute of Horticultural and Herbal Science, Fruit Foundation Division) ;
  • Ji Hae Jun (Research Institute of Climate Change and Agriculture)
  • 조상윤 (국립원예특작과학원 과수기초기반과) ;
  • 김현란 (국립원예특작과학원 과수기초기반과) ;
  • 조강희 (농촌진흥청 연구정책국) ;
  • 김세희 (국립원예특작과학원 과수기초기반과) ;
  • 윤병현 (국립원예특작과학원 과수기초기반과) ;
  • 오세원 (국립원예특작과학원 과수기초기반과) ;
  • 전지혜 (온난화대응농업연구소)
  • Received : 2024.02.20
  • Accepted : 2024.04.25
  • Published : 2024.08.01

Abstract

This study was undertaken to elucidate the effects of virus and viroid infections on the growth of trees and the attributes of fruit quality in 'Hongro' apples. Trials were initiated using virus-infected, viroid-infected, combined virus/viroid-infected, and uninfected apple trees in an experimental apple orchard at the National Institute of Horticultural and Herbal Science in 2019. The growth of each tree was measured annually and compared between virus-free and virus/viroid-infected trees. Fruits were harvested from all apple trees, and selected attributes of fruit quality, including yield, weight, firmness, titratable acidity, and anthocyanin content, were determined in September 2021-2022. The results revealed significant differences among virus-free trees and those infected with either virus, viroid, or a combination of virus and viroid. Infection with viral and viroid diseases led to reductions in tree height (14.0%), trunk area (23.1%), fruit yield (65.0%), fruit weight (34.4%), and anthocyanin content (39.8%), while increasing fruit firmness (33.2%) and titratable acidity (39.8%), respectively. We anticipate that our research findings will also be beneficial for apple virus and viroid disease control, as well as apple cultivation management.

본 연구는 '홍로' 사과의 바이러스와 바이로이드 감염이 수체 생장 및 과실 영향을 분석하기 위해 수행되었다. 무병묘와 감염묘를 동일한 환경 조건에서 비교하고 분석하기 위해 2019년 국립원예특작과학원 원내에 실증포장을 조성하고 수체 생장 및 과실 품질을 조사하였다. 수체 생장은 연도별로 조사하였고, 과실은 2021-2022년 시험수의 재식 3~4년차에 2년동안 조사하여 과실 수량, 무게, 경도, 당도, 산도, 안토시아닌함량을 측정하였다. 연구 결과 바이러스와 바이로이드 감염에 의해 '홍로'의 수고(14.0%), 주간직경(23.1%), 과실 수량(65.0%), 과중(34.4%), 과피의 안토시아닌함량(39.8%)은 감소하였으며, 경도(33.2%)와 산도(39.8%)는 증가하였다. 이러한 결과는 사과 바이러스병과 바이로이드병의 피해를 이해하고 효과적인 방제를 통해 사과 과원에 재배적인 도움이 될 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립원예특작과학원 연구개발사업(PJ014481)의 지원에 의해 수행되었음.

References

  1. Agrios, G.H. 1997. Plant Pathol 4th Edition, Academic Press, San Diego, USA. p. 635.
  2. Atallah, S.S., M.I. Gomez, M.F. Fuchs and T.E. Martinson. 2012. Economic impact of grapevine leafroll disease on Vitis vinifera cv. Cabernet franc in finger lakes vineyards of New York. Am. J. Enol. Vitic. 63:73-70.
  3. Baumann, G. and G.E. Bonn. 1988. The influence of apple mosaic virus and rubbery wood on growth and cropping of apple trees on M9 Till the 13th orchard year. Erwerbsobstbau 30:162-165.
  4. Brunt, A.A., K. Crabtree, M.J. Dallwitz, A.J. Gibbs and L. Watson. 1996. Virus of plants in Australia: descriptions and lists from the vide database. Viruses of Tropical Plants Descriptions & Lists from the Vide Database.
  5. Cambell, A. 1963. The effect of some latent virus infections on the growth and cropping of apples. J. Horti. Sci. 38(1):15-19. https://doi.org/10.1080/00221589.1963.11514054
  6. Chamberlain, E.E., J.D. Atkinson, J.A. Hunter and G.A. Wood. 1971. Effect of apple mosaic virus on growth and cropping of 'Freyberg' apple trees. J. Agri. Res. 14:936-943. https://doi.org/10.1080/00288233.1971.10421687
  7. Chen, S., T. Ye, L. Hao, H. Chen, S. Wang, Z. Fan, L. Guo and T. Zhou. 2014. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no symptoms. PloS One 9(4):e95239.
  8. Cho, I.S., S.J. Kwon, J.Y. Yoon, B.N. Chung, J. Hammond and H.S. Lim. 2017. First report of apple necrotic mosaic virus infecting apple trees in Korea. J. Plant Pathol. 99(3):815.
  9. Flores, R., S. Minoia, A. Carbonell, A. Gisel, S. Delgado, A. Lopez-Carrasco, B. Navarro and F. Di Serio. 2015. Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res. 209:136-145. https://doi.org/10.1016/j.virusres.2015.02.027
  10. Hadidi, A., G. Vidalakis and T. Sano. 2017a. Economic significance of fruit tree and grapevine viroids. In Hadidi, A., R. Flores, J.W. Randles and P. Palukaitis (eds.), Viroids and Satellites, Academic Press, London, UK. pp. 15-25.
  11. Hadidi, A., M. Barba, Ni. Hong and V. Hallan. 2017b. Viroids and Satellites, Academic Press, London, UK. pp. 217-228.
  12. Hammond, R.W. 2017. Economic significance of viroids in vegetable and field crops. In Hadidi, A., R. Flores, J.W. Randles and P. Palukaitis (eds.), Viroids and Satellites, Academic Press, London, UK. pp. 5-13.
  13. Hashimoto, J. and H. Koganezawa. 1987. Nucleotide sequence and secondary structure of Apple scar skin viroid. Nucleic Acids Res. 15:7045-7052. https://doi.org/10.1093/nar/15.17.7045
  14. Kim, H.R., J.S. Kim, J.H. Hwang, S.H. Lee, G.S. Choi, G.S and Y.M. Choi. 2004. Influence of ACLSV-infection on fruit quality of 'Hongro' apples. Res. Plant Dis. 10(2):145-149 (in Korean). https://doi.org/10.5423/RPD.2004.10.2.145
  15. Kim, H.R., S.H. Lee, D.H. Lee, J.S. Kim and J.W. Park. 2006. Transmission of apple scar skin viroid by grafting, using contaminated pruning equipment, and planting infected seeds. Plant Pathol. J. 22(1):63-67. https://doi.org/10.5423/PPJ.2006.22.1.063
  16. Korea Rural Economic Institute. 2023. Agricultural Outlook Center. Monthly Agricultural Observation Report (April 2023 Issue). Available from http://aglook.krei.re.kr/main/uObserveMonth
  17. Korean Statistical Information Service. 2022. Cultivated Area of Orchard (Field) and Fruit Production. Available from http://kosis.kr/statisticsList
  18. Lee, S., J.-S. Cha, Y. Kwon, Y.S. Lee, S.E. Yoo, J.H. Kim and D. Kim. 2020. Occurrence status of five apple virus and viroid in Korea. Res. Plant Dis. 26(2):95-102. https://doi.org/10.5423/RPD.2020.26.2.95
  19. Li, G., J. Li, H. Zhang, J. Li, L. Jia, S. Zhou, Y. Wang, J. Sun, M. Tan and J. Shao. 2023. ASSVd infection inhibits the vegetative growth of apple trees by affecting leaf metabolism. Front. Plant Sci. 14:1137630.
  20. Lim, S.M., J.S. Moon, I.S. Cho, H.R. Kim and S.H. Lee. 2019. First report of apple hammerhead viroid infecting apple trees in South Korea. Plant Dis. 103(10):2700.
  21. Loanna, M., B. Despoina, I. Loannis, O. Antonio, V. Christina, V. Nikon and W. Sek-Man. 2017. Simultaneous detection of three pome fruit tree viruses by one-step multiplex quantitative RT-PCR. PloS One 12(7):e0180877.
  22. Lopez-Carrasco, A. and R. Flores. 2017. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro. RNA Biol. 14:1046-1054. https://doi.org/10.1080/15476286.2016.1223005
  23. Ma, L., Q. Zeng, W. Huang, S. Wang, Y. Zhang, Y. Cheng, Q. Zhang, S. Wang, L. Hao, C. Xu, Y. Yu, B. Wang, T. Li and F. Jiang. 2021. Incidence of major pome fruit tree viruses and viroids in commercial pear orchards in china and in Pyrus betulifolia seedling. Plant Pathol. 70(6):1467-1475. https://doi.org/10.1111/ppa.13375
  24. Meijnske, C.A.R., H.J. van Oosten and H. Peerbooms. 1975. Growth, yield and fruit quality of virus-infected and virus-free 'Golden Delicious' apple trees. Acta Hortic. 44:209-212. https://doi.org/10.17660/ActaHortic.1975.44.33
  25. Nemeth, M.V., L. Szalay-Marzso and A. Posnette. 1986. Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees. Kluwer Academic Publishers, Dordrecht, Netherlands. p. 840.
  26. Oh, S., S.H. Moon, K.-I. Jang, J. Lee and D. Kim. 2023. Comparison of fruit characteristics of 'Fuki'/M.26 in response to ethephon treatment and combined treatment of ethephon and CaCl2 during maturing stages. Korean J. Plant Res. 36(5):517-526 (in Korean).
  27. Perrone, I., W. Chitarra, P. Boccacci and G. Gambino. 2017. Grapevine-virus-environment interactions: and intriguing puzzle to solve. New Phytologist 213:983-987. https://doi.org/10.1111/nph.14271
  28. Posnette, A.F., R. Cropley and C. Ellemberger. 1963. The effect of virus infection on the growth and crop apple, pear and plum trees. Phytopathol. Mediterr. 2:158-161.
  29. Sampson, P.J. and G.R. Johnson. 1974. Effects of rootstocks, scion, variety and virus compliment on fruit production and growth of young apple trees. J. Hort. Sci. 49:183-187. https://doi.org/10.1080/00221589.1974.11514566
  30. Schmidt, H. 1972. The effect of 'latent' virus infections on the yield of maiden trees on 20 apomictic apple seedling rootstocks. J. Hort. Sci. 45:159-163. https://doi.org/10.1080/00221589.1972.11514451
  31. Siegelman, H.W. and S.B. Hendricks. 1958. Photocontrol of alcohol, aldehyde, and anthocyanin production in apple skin. Plant Physiol. 33(6):409-413. https://doi.org/10.1104/pp.33.6.409
  32. Sutic, D.D., R.E. Ford and M.T. Tosic. 1999. Virus disease of fruit trees. In Sutic, D.D., R.E. Ford and M.T. Tosic (eds.), Handbook of Plant Virus Diseases. CRC Press, Boca Raton, FL (USA). pp. 321-432.
  33. Szychowski, J.A., M.V. McKenry, M.A. Walker, J.A. Wolpert, R. Credi and J.S. Semancik. 1995. The vein-banding disease syndrome: A synergistic reaction between grapevine viroids and fanleaf virus. Vitis 34:229-234.
  34. Umer, M., J. Liu, H. You, C. Xu, K. Dong, N. Luo, L. Kong, X. Li, N. Hong, G. Wang, X. Fan, J. Kotta-Loizou and W. Xu. 2019. Genomic, morphological and biological traits of the viruses infecting major fruit trees. Viruses 11(6):515-526. https://doi.org/10.3390/v11060515
  35. van Oosten, H.J., C.A.R. Meijnske and H. Peerbooms. 1982. Growth, yield and fruit quality of virus-infected and virus-free golden delicious apple trees, 1968-1982. Acta. Hortic. 130:213-220.
  36. Vega, A., R.A. Gutierrez, A. Penna-Neira, G.R. Cramer and P. Arece-Johnson. 2011. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera. Plant Mol. Biol. 77:261-274. https://doi.org/10.1007/s11103-011-9807-8
  37. Verhoeven, J.T.J., R.W. Hammond and G. Stancanelli. 2017. Economic significance of viroids in ornamental Crops. In Hadidi, A., R. Flores, J.W. Randles and P. Palukaitis (eds.), Viroids and Satellites, Academic Press, London, UK. pp. 27-38.
  38. Wood, G.A. 1974. Elimination of latent apple viruses shows growth and yield improvement. Orchard NZ 47(6):173.
  39. Wood, G.A. 1978. Effect of rubbery wood disease on growth and yield of golden delicious apple trees. Orchard NZ 51:66-67.
  40. Xu, L., X. Zong, J. Wang, H. Wei, X. Chen and Q. Liu. 2020. Transcriptomic analysis reveals insights into the response to Hop stunt viroid (HSVd) in sweet cherry (Prunus anium L.) fruits. PeerJ 8:e10005.