DOI QR코드

DOI QR Code

Univariate and Multivariate Analysis of Phenotypic Traits in Mung Beans Reveals Diversity Among Korean, Indian, and Chinese Accessions

  • Kebede Taye Desta (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Young-ah Jeon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Myoung-Jae Shin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yu-Mi Choi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jungyoon Yi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyemyeong Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2024.01.29
  • Accepted : 2024.03.27
  • Published : 2024.06.01

Abstract

This study investigated the diversity of 323 mung bean accessions from Korea, China, and India, along with six cultivars, using 22 agronomical traits. The standardized Shannon-Weaver index (H') for the qualitative traits ranged from 0.11 (terminal leaflet shape) to 0.98 (pubescence density of pod). Likewise, the coefficient of variation for the quantitative traits ranged from 8.76% (days to maturity (DM)) to 79.91% (lodging rate (LR)), indicating a wide genetic variance. Hypocotyl color, pod color, seed shape, and seed coat surface lust showed different distributions among Korean, Indian, and Chinese accessions. Chinese accessions had the highest average germination rate, DM, days from flowering to maturity, and one-hundred seeds weight, followed by Korean and Indian accessions, while the number of seeds per pod (SPP) displayed the opposite trend, with all except SPP showing significant variation (p < 0.05). Similarly, plant height, days to flowering, and number of pods per plant increased in the order of India > Korea > China, with LR showing the opposite trend (p < 0.05). The mung bean accessions were grouped into four major clusters using hierarchical cluster analysis supported by principal component analyses, and all of the quantitative traits showed significant variations between the clusters (p < 0.05). Generally, the mung bean accessions investigated in this study exhibited wide phenotypic trait variations, which could be beneficial for future genomics studies. Moreover, this study identified 77 accessions that outperformed the controls. Consequently, these superior accessions could provide a wide spectrum of options during the development of improved mung bean varieties.

Keywords

Acknowledgement

This research was funded by the Research Program for Agricultural Science and Technology Development (Project No. PJ01674302) of the National Institute of Agricultural Sciences, Rural Development Administration (Jeonju, Korea).

References

  1. Azam, M.G., M.A. Hossain, U. Sarker, A.K.M.M. Alam, R.M. Nair, R. Roychowdhury, S. Ercisli and K.S. Golokhvast. 2023. Genetic analyses of mung bean [Vigna radiata (L.) Wilczek] breeding traits for selecting superior genotype(s) using multivariate and multi-traits indexing approaches. Plants 12:1984.
  2. Burlyaeva, M., M. Vishnyakova, M. Gurkina, K. Kozlov, C.R. Lee, C.T. Ting, R. Schafleitner, S. Nuzhdin, M. Samsonova and E. von Wettberg. 2019. Collections of mung bean [Vigna radiata) (L.) R. Wilczek] and urdbean [V. mungo (L.) Hepper] in Vavilov Institute (VIR): traits diversity and trends in the breeding process over the last 100 years. Genet. Resour. Crop Evol. 66:767-781. https://doi.org/10.1007/s10722-019-00760-2
  3. Chauhan, Y.S. and R. Williams. 2018. Physiological and agronomic strategies to increase mung bean yield in climatically variable environments of Northern Australia. Agronomy 8:83.
  4. Chen, H., L. Qiao, L. Wang, S. Wang, M.W. Blair and X. Cheng. 2015. Assessment of genetic diversity and population structure of mung bean (Vigna radiata) germplasm using EST-based and genomic SSR markers. Gene 566:175-183. https://doi.org/10.1016/j.gene.2015.04.043
  5. Chiteri, K.O., T.Z. Jubery, S. Dutta, B. Ganapathysubramanian, S. Cannon and A. Singh. 2022. Dissecting the root phenotypic and genotypic variability of the Iowa mung bean diversity panel. Front. Plant Sci. 12:808001.
  6. Dong, R., S.H. Shen, M.Z.Z. Jahufer, D.K. Dong, D. Luo, Q. Zhou, X.T. Chai, K. Luo, Z.B. Nan, Y.R. Wang and Z.P. Liu. 2019. Effect of genotype and environment on agronomical characters of common vetch (Vicia sativa L.). Genet. Resour. Crop Evol. 66:1587-1599. https://doi.org/10.1007/s10722-019-00789-3
  7. Ganesan, K. and B. Xu. 2018. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness 7:11-33. https://doi.org/10.1016/j.fshw.2017.11.002
  8. Gayacharan, K. Tripathi, S.K. Meena, B.S. Panwar, H. Lal, J.C. Rana and K. Singh. 2020. Understanding genetic variability in the mung bean (Vigna radiata L.) genepool. Ann. Appl. Biol. 177:346-357. https://doi.org/10.1111/aab.12624
  9. Ghafoor, A., Z. Ahmad, A.S. Qureshi and M. Bashir. 2002. Genetic relationship in Vigna mungo (L.) Hepper and V. radiata (L.) R. Wilczek based on morphological traits and SDS-PAGE. Euphytica 123:367-378. https://doi.org/10.1023/A:1015092502466
  10. Gwag, J.G., A. Dixit, Y.J. Park, K.H. Ma, S.J. Kwon, G.T. Cho, G.A. Lee, S.Y. Lee, H.K. Kang and S.H. Lee. 2010. Assessment of genetic diversity and population structure in mungbean. Genes Genom. 32:299-308. https://doi.org/10.1007/s13258-010-0014-9
  11. Ha, J., D. Satyawan, H. Jeong, E. Lee, K.H. Cho, M.Y. Kim and S.H. Lee. 2021. A near-complete genome sequence of mungbean (Vigna radiata L) provides key insights into the modern breeding program. Plant Genome 14:e20121.
  12. Hou, D., L. Yousaf, Y. Xue, J. Hu, J. Wu, X. Hu, N. Feng and Q. Shen. 2019. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11:1-28.
  13. Huppertz, M., S.L. Manasa, D. Kachhap, A. Dalai, N. Yadav, D. Baby, M.A. Khan, P. Bauer and K.C.S. Panigrahi. 2023. Exploring the potential of mung bean: From domestication and traditional selection to modern genetic and genomic technologies in a changing world. J. Agric. Food Res. 14:100786.
  14. Islam, M.R., M.M. Kamal, M.A. Alam, J. Hossain, W. Soufan, M. Skalicky, M. Brestic, M. Habib-Ur-rahman, A.E.L. Sabagh and M.S. Islam. 2021a. Physiochemical changes of mung bean [Vigna radiata (L.) r. wilczek] in responses to varying irrigation regimes. Horticulturae 7:565.
  15. Islam, M.R., B.C. Sarker, M.A. Alam, T. Javed, M.J. Alam, M.S.U. Zaman, M.G. Azam, R. Shabbir, A. Raza, M. Habibur-rahman, E.S. Dessoky and M.S. Islam. 2021b. Yield stability and genotype environment interaction of water deficit stress tolerant mung bean (Vigna radiata l. wilczak) genotypes of Bangladesh. Agronomy 11:2136.
  16. Jena, R.C., K. Agarwal, T.S. Ghosh and P.K. Chand. 2017. Population structuring of selected mungbean landraces of the Odisha State of India via DNA marker-based genetic diversity analysis. Agri. Gene. 3:67-86. https://doi.org/10.1016/j.aggene.2016.11.007
  17. Jeong, Y.M., J.H. Ha, G.Y. Noh and S.N. Park. 2016. Inhibitory effects of mung bean (Vigna radiata L.) seed and sp rout extracts on melanogenesis. Food Sci. Biotechnol. 25:567-573. https://doi.org/10.1007/s10068-016-0079-6
  18. Kang, Y.J., Y.J. Kang, S.K. Kim, M.Y. Kim, P. Lestari, K.H. Kim, B.K. Ha, T.H. Jun, W.J. Hwang, T. Lee, J. Lee, S. Shim, M.Y. Yoon, Y.E. Jang, K.S. Han, P. Taeprayoon, N. Yoon, P. Somta, P. Tanya, K.S. Kim, J.G. Gwag, J.K. Moon, Y.H. Lee, B.S. Park, A. Bombarely, J.J. Doyle, S.A. Jackson, R. Schafleitner, P. Srinives, R.K. Varshney and S.H. Lee. 2014. Genome sequence of mung bean and insights into evolution within Vigna species. Nature Comm. 5:5443.
  19. Kim, Y.Y., K.S. Woo and H.J. Chung. 2018a. Starch characteristics of cowpea and mung beans cultivars grown in Korea. Food Chem. 263:104-111. https://doi.org/10.1016/j.foodchem.2018.04.114
  20. Kim, D., J., Choi, O. Kwon, K. Lee, M. Seo and H. Kim. 2018b. Mungbean cultivar, 'Munpyeong', with a short stem and high yield. Korean J. Breed. Sci. 50:485-489. https://doi.org/10.9787/KJBS.2018.50.4.485
  21. Kim, D.K., D.M. Son, J.K. Choi, S.U. Chon, K.D. Lee and Y.S. Rim. 2010. Growth property and seed quality of mung bean cultivars appropriate for labor saving cultivation. Korean J. Crop Sci. 55:239-244.
  22. Lee, J.S., Y.U. Park, J.H. Jeong, Y.H. Kwon, W.B. Chang and H.D. Lee. 2021. Classification of garlic germplasms based on agronomic characteristics and multivariative analysis. Korean J. Plant Res. 34:79-88. https://doi.org/10.7732/KJPR.2021.34.1.079
  23. Li, H., D. Cao, J. Yi, J. Cao and W. Jiang. 2012. Identification of the flavonoids in mung bean (Phaseolus radiatus L.) soup and their antioxidant activities. Food Chem. 135:2942-2946. https://doi.org/10.1016/j.foodchem.2012.07.048
  24. Manjunatha, P.B., M.S. Aski, G.P. Mishra, S. Gupta, N.B. Devate, A. Singh, R. Bansal, S. Kumar, R.M. Nair and H.K. Dikshit. 2023. Genome-wide association studies for phenological and agronomic traits in mung bean (Vigna radiata L. Wilczek). Front. Plant Sci.14:1-15.
  25. Marzario, S., R. Sica, F. Taranto, F. Fania, S. Esposito, P. De Vita, T. Gioia and G. Logozzo. 2023. Phenotypic evolution in durum wheat (Triticum durum Desf.) based on SNPs, morphological traits, UPOV descriptors and kernel-related traits. Front. Plant Sci. 14:1-20.
  26. Meena, S.K., R. Pandey, S. Sharma, Gayacharan, K. Vengavasi, H.K. Dikshit, K.H.M. Siddique and M.P. Singh. 2021. Cross tolerance to phosphorus deficiency and drought stress in mungbean is regulated by improved antioxidant capacity, biological N2-fixation, and differential transcript accumulation. Plant Soil. 466:337-356. https://doi.org/10.1007/s11104-021-05062-0
  27. Mwangi, J.W., O.R. Okoth, M.P. Kariuki and N.M. Piero. 2021. Genetic and phenotypic diversity of selected Kenyan mung bean (Vigna radiata L. Wilckzek) genotypes. J. Genet. Eng. Biotechnol. 19:142.
  28. Nair, R.M., A.K. Pandey, A.R. War, B. Hanumantharao, T. Shwe, A.K.M.M. Alam, A. Pratap, S.R. Malik, R. Karimi, E.K. Mbeyagala, C.A. Douglas, J. Rane and R. Schafleitner. 2019. Biotic and abiotic constraints in mungbean production-progress in genetic improvement. Front. Plant Sci. 10:1-24. https://doi.org/10.3389/fpls.2019.00001
  29. Nana, R., M. Oumar, N. Sawadogo and M. Loure. 2023. Agro-physiological performance of mung bean accessions (Vigna radiate (L) R. Wilczek) and nitrogen balance under mungbean in Burkina Faso. Int. J. Agron. 2534069.
  30. Oh, S.Y., J. Choi and S. H. Oh. 2024. Selection of soybean (Glycine max (L.) Merrill) cultivars suitable for cultivation in the peddy fields of the Southern Korea. Korean J. Plant Res. 37:71-78.
  31. Pipan, B., L. Sinkovic, M. Neji, D. Janovska, M. Zhou and V. Meglic. 2023. Agro-morphological and molecular characterization reveal deep insights in promising genetic diversity and marker-trait associations in Fagopyrum esculentum and Fagopyrum tataricum. Plants 12:3321.
  32. Qin, L., S. Chen, L. Xie, Q. Yu, Y. Chen and J. Xie. 2022. Recent advances in mung bean polysaccharides: Extraction, physicochemical properties and biological activities. Process Biochem. 121:248-256. https://doi.org/10.1016/j.procbio.2022.07.014
  33. Rabara, R.C., M.C. Ferrer, C.L. Diaz, Ma, C.V. Newingham and G.O. Romero. 2014. Phenotypic diversity of farmers' traditional rice varieties in the Philippines. Agronomy 4:217-241. https://doi.org/10.3390/agronomy4020217
  34. Rahangdale, S., J.P. Lakhani, S.K. Singh and A. Barela. 2023. Phenotyping and reveal novel traits in mung bean (Vigna radiata L. Wilczek) genotypes. S. Afr. J. Bot. 156:65-71.
  35. Rural Development Administration (RDA). 2006. Manual on investigation of characteristics and management of genetic resources: Mung Bean (Vigna radiata). pp. 26-36 (in Korean).
  36. Sandhu, K. and A. Singh. 2020. Strategies for the utilization of the USDA mung bean germplasm collection for breeding outcomes. Crop Sci. 61:422-442. https://doi.org/10.1002/csc2.20322
  37. Schafleitner, R., R.M. Nair, A. Rathore, Y.W. Wang, C.Y. Lin, S.H. Chu, P.Y. Lin, J.C. Chang and A.W. Ebert. 2015. The AVRDC - The World Vegetable Center mung bean (Vigna radiata) core and mini core collections. BMC Genom. 16:1-11. https://doi.org/10.1186/1471-2164-16-1
  38. Sehrawat, N., M., Yadav, S. Kumar, A. Devi, R. Singh, V. Sharma, K. Dhama, J.M. Lorenzo and A.K. Sharma. 2023. Mung bean as a potent emerging functional food having anticancer therapeutic potential: Mechanistic insight and recent updates. Biotechnol. Appl. Biochem. 70:2002-2016.
  39. Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27:379-423.  https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  40. Singh, B.J., P. Singh, A. Kaur and N. Singh. 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 101:1-16. https://doi.org/10.1016/j.foodres.2017.09.026
  41. Singh, C.M., P. Singh, C. Tiwari, S. Purwar, M. Kumar, A. Pratap, S. Singh, V. Chugh and A.K. Mishra. 2021. Improving drought tolerance in mung bean (Vigna radiata L. Wilczek): Morpho-physiological, biochemical and molecular perspectives. Agronomy 11:1-20.
  42. Somta, P., K. Laosatit, X. Yuan and X. Chen. 2022. Thirty years of mung bean genome research: Where do we stand and what have we learned? Front. Plant Sci. 13:944721.
  43. Thomas, M., J. Robertson, S. Fukai and M.B. Peoples. 2004. The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mung bean. Field Crops Res. 86:67-80. https://doi.org/10.1016/S0378-4290(03)00120-5
  44. Van Haeften, S., C. Dudley, Y. Kang, D. Smith, R.M. Nair, C.A. Douglas, A. Potgieter, H. Robinson, L.T. Kickey and M.R. Smith. 2023. Building a better mung bean: Breeding for reproductive resilience in a changing climate. Food Energy Secur. 12:e467.
  45. Vir, R., S. Lakhanpaul, S. Malik, S. Umdale and K.V. Bhat. 2016. Utilization of germplasm for the genetic improvement of mung bean [Vigna radiata (L.) Wilczek]: The Constraints and the opportunities. In Rajpal, V., S. Rao and S. Raina (eds.), Gene Pool Diversity and Crop Improvement, Sustainable Development and Biodiversity, Springer Cham. 10:367-391.
  46. Wang, F., L. Huang, X. Yuan, X. Zhang, L. Guo, C. Xue and X. Chen. 2021. Nutritional, phytochemical and antioxidant properties of 24 mung bean (Vigna radiate L.) genotypes. Food Prod. Process. Nutr. 3:28.
  47. Wang, L., P. Bai, X. Yuan, H. Chen, S. Wang, X. Chen and X. Cheng. 2018. Genetic diversity assessment of a set of introduced mung bean accessions (Vigna radiata L.). Crop J. 6:207-213. https://doi.org/10.1016/j.cj.2017.08.004
  48. World Vegetable Center-Genetic Resources and Seed Unit (AVRDC-GRSU) Characterization record sheet. 2008. Crop: Vigna radiata (Mung bean), Vigna mungo (Black gram) & Vigna umbellata (Rice bean). AVRDC, Shanhua, Taiwan.
  49. Yimram, T., P. Somta and P. Srinives. 2009. Genetic variation in cultivated mungbean germplasm and its implication in breeding for high yield. Field Crops Res. 112:260-266. https://doi.org/10.1016/j.fcr.2009.03.013
  50. Yu, D.S., Y.M. Choi, X. Wang and M. Kang. 2023. An analysis of the heritability of phenotypic traits using chloroplast genomic information of legume germplasms. Korean J. Plant Res. 36:369-380. https://doi.org/10.7732/KJPR.2023.36.4.369
  51. Zhao, H., J. Tang and Q. Yang. 2020. Effects of geographical origin, variety, harvest season, and their interactions on multi-elements in cereal, tuber, and legume crops for authenticity. J. Food Compos. Anal. 100:103900.
  52. Zhao, T., X. Meng, C. Chen, L. Wang, X. Cheng and W. Xue. 2022. Agronomic traits, fresh food processing characteristics and sensory quality of 26 mung bean (Vigna radiata L.) cultivars (Fabaceae) in China. Foods 11:1687.