DOI QR코드

DOI QR Code

Impacts of Unsystematic Solid Waste Dumping on Soil Properties and Climate Change

  • Benish ZAHRA (Dept. of Environmental Health & Safety, Eulji University) ;
  • Farida BEGUM (Dept. Environmental Science Karakoram International University) ;
  • Woo-Taeg KWON (Dept. of Environmental Health & Safety, Eulji University) ;
  • Seung-Jun WOO (Dept. of Environmental Health & Safety, Eulji University) ;
  • Min-Jae JUNG (Dept. of Environmental Health & Safety, Eulji University)
  • 투고 : 2024.08.14
  • 심사 : 2024.08.17
  • 발행 : 2024.09.30

초록

Purpose: Open-air dumping is a significant problem in Gilgit City, with limited research analyzing waste generation and its physicochemical impact on the soil. This study aimed to evaluate the effects of open dumping on soil properties and compare them with a controlled site. Research Design, data, and Methodology: Using ANOVA, the study found significant differences in electrical conductivity (EC), soil organic matter (SOM), soil organic carbon (SOC), sand, silt, and clay between the two sites, except for pH. Pearson correlation revealed that pH negatively correlated with EC, sand, and silt, but positively with SOM, SOC, and clay. The control site's mean EC was 6.06 mS/m, whereas the dumping site recorded 8.5 mS/m. EC is inversely related to SOM, SOC, silt, and clay, but directly to sand. SOC and SOM values varied significantly, with notable differences in soil texture components like clay and silt. Results: The research highlights the detrimental effects of unsystematic waste dumping on soil health and its contribution to greenhouse gas emissions, particularly methane, which exacerbates climate change. Conclusion: The study concluded that waste deposition and decomposition significantly impact EC, SOM, SOC, and soil texture, though pH remains unchanged. The unsystematic dumping of solid waste contributes to climate change through methane production, a potent greenhouse gas. To mitigate these impacts, the study recommends regular monitoring, waste prevention, recycling strategies, and continuous training for stakeholders to achieve sustainable development.

키워드

과제정보

This work was supported by the research grant of the KODISA Scholarship Foundation in 2024. This work is financially supported by Korea Ministry of Environment (MOE) as 「Graduate School specialized in Climate Change」.

참고문헌

  1. Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals (Vol. 860). New York: Springer.
  2. Agacayak, T. (2019). Turkiye'de Atik, Atiksu Ve Hava Kalitesi Yonetiminde Iklim Degisikligi Kapsamli Yerel Calismalar. Iklim Degisikligi Egitim Modulleri Serisi, 13.
  3. Heng, L. Y., & Surif, S. (2009). Toxicity testing and the effect of landfill leachate in Malaysia on the behavior of common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). American Journal of Environmental Sciences, 5(3), 209-217. https://doi.org/10.3844/ajessp.2009.209.217
  4. Anikwe, M. A. N., & Nwobodo, K. C. A. (2002). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresource technology, 83(3), 241-250.
  5. Batool, S. A., Chaudhry, N., & Majeed, K. (2008). Economic potential of recycling business in Lahore, Pakistan. Waste management, 28(2), 294-298.
  6. Begum, F., Alam, M., Mumtaz, S., Ali, M., Wafee, S., Khan, M. Z., ... & Khan, A. (2019). Soil quality variation under different land use types in Haramosh Valley, Gilgit, Pakistan. International Journal of Economic and Environmental Geology, 10(2), 32-37.
  7. Beyene, H., & Banerjee, S. (2011). Assessment of the pollution status of the solid waste disposal site of Addis Ababa City with some selected trace elements, Ethiopia. World Applied Sciences Journal, 14(7), 1048-1057.
  8. Breza-Boruta, B., Lemanowicz, J., & Bartkowiak, A. (2016). Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites. Environmental earth sciences, 75, 1-13.
  9. Chaudhary, R., & Garg, R. (2014). Comparisons of Two Methods for Methane Emission at Proposed Landfill Site and Their Contribution to Climate Change: Indore City. Int. J. Appl. Innov. Eng. Manag, 3(5), 9-16.
  10. Das, K. C., Smith, M. C., Gattie, D. K., & Boothe, D. D. H. (2002). Stability and quality of municipal solid waste compost from a landfill aerobic bioreduction process. Advances in Environmental Research, 6(4), 401-409.
  11. El-Fadel, M., & Massoud, M. (2000). Emissions from landfills: A methodology comparative assessment. Environmental technology, 21(9), 965-978.
  12. Fesha, I. G., Shaw, J. N., Reeves, D. W., Wood, C. W., Feng, Y., Norfleet, M. L., & Van Santen, E. (2002). Land use effects on soil quality parameters for identical soil taxa. Making conservation tillage conventional: Building a future on, 25, 233-238.
  13. Fesha, I. G., Shaw, J. N., Reeves, D. W., Wood, C. W., Feng, Y., Norfleet, M. L., & Van Santen, E. (2002). Land use effects on soil quality parameters for identical soil taxa. Making conservation tillage conventional: Building a future on, 25, 233-238.
  14. Gautam, M., & Agrawal, M. (2021). Greenhouse gas emissions from municipal solid waste management: a review of global scenario. Carbon footprint case studies: municipal solid waste management, sustainable road transport and carbon sequestration, 123-160.
  15. Gbola, H. A. O. L. A., Adewuyi, K., & Azeez, M. O. (n.d.). Heavy metal contents in soil and plants at dumpsites: A case study of Awotan and Ajakanga dumpsite Ibadan, Oyo State, Nigeria. International Journal of Environmental Science, Toxicology and Food Technology, 10(11), 22-34.
  16. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411.
  17. Gichamo, T., & Gokcekus, H. (2019). Interrelation between climate change and solid waste. J. Environ. Pollut. Control, 2(1), 104.
  18. Giusquiani, P. L., Marucchini, C., & Businelli, M. (1988). Chemical properties of soils amended with compost of urban waste. Plant and Soil, 109, 73-78.
  19. Goswami, U., & Sarma, H. P. (2008). Study of the impact of municipal solid waste dumping on soil quality in Guwahati city. Pollution research, 27(2), 327-330.
  20. Ho, L., Jerves-Cobo, R., Barthel, M., Six, J., Bode, S., Boeckx, P., & Goethals, P. (2020). Effects of land use and water quality on greenhouse gas emissions from an urban river system. Biogeosciences Discussions, 2020, 1-22.
  21. JICA (Japan International Cooperation Agency) and Pak-EPA (Pakistan Environmental Protection Agency), (2005). Guidelines for Solid Waste Management, Pak-EPA, Pakistan.
  22. Jilani, S., & Rashid, R. (2020). Municipal solid waste dumping and its impact on soil quality in Karachi. EQA-International Journal of Environmental Quality, 36, 9-14.
  23. Kadar, I. (1992). Principles and Methods in Plant Nutrition Budapest: RISSAC-Akaprint.
  24. Kardogan, P. O., & Erdag, A. (2022). The Effects of Construction Waste on Climate Change: Is a More Green Construction Industry Possible?. Muhendislik Bilimleri ve Tasarim Dergisi, 10(4), 1222-1231.
  25. King, A. E., Ali, G. A., Gillespie, A. W., & Wagner-Riddle, C. (2020). Soil organic matter as catalyst of crop resource capture. Frontiers in Environmental Science, 8, 50.
  26. King, A. E., Congreves, K. A., Deen, B., Dunfield, K. E., Voroney, R. P., & Wagner-Riddle, C. (2019). Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biology and Biochemistry, 135, 95-107.
  27. Koica - World Bank 2007. Solid Waste Management in Punjab. Final Report Draft Part 2.
  28. Kristanto, G. A., & Koven, W. (2019). Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City and environment interactions, 4, 100027.
  29. Manfredi, S., Tonini, D., Christensen, T. H., & Scharff, H. (2009). Landfilling of waste: accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27(8), 825-836.
  30. Manzoor, J., & Sharma, M. (2019). Impact of biomedical waste on environment and human health. Environmental Claims Journal, 31(4), 311-334.
  31. Marschner, H. (Ed.). (2011). Marschner's mineral nutrition of higher plants. Academic press.
  32. Marton, L., Pereda, M. P., & Mohinder, S. G. (2007). Long-term studies of crop yields with changing rainfall and fertilization. Agricultural Engineering Research, 13(3), 37-47.
  33. Morris, G. E., & Holthausen Jr, D. M. (1994). The economics of household solid waste generation and disposal. Journal of environmental economics and management, 26(3), 215-234.
  34. Mouhoun-Chouaki, S., Derridj, A., Tazdait, D., & Salah-Tazdait, R. (2019). A Study of the Impact of Municipal Solid Waste on Some Soil Physicochemical Properties: The Case of the Landfill of Ain-El-Hammam Municipality, Algeria. Applied and Environmental Soil Science, 2019(1), 3560456.
  35. Narsimha, A., Narshimha, C. H., Srinivasulu, P., & Sudarshan, V. (2013). Relating apparent electrical conductivity and pH to soil and water in Kanagal surrounding area, Nalgonda district, Andhra Pradesh. International Journal of Scientific and Research Publications, 3(2), 1-6.
  36. Netz, B., Davidson, O. R., Bosch, P. R., Dave, R., & Meyer, L. A. (2007). Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers.
  37. Ngwabie, N. M., Wirlen, Y. L., Yinda, G. S., & VanderZaag, A. C. (2019). Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. Waste Management, 87, 947-953.
  38. Olivier, L., Boutin, J., Reverdin, G., Lefevre, N., Landschutzer, P., Speich, S., ... & Wanninkhof, R. (2022). Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO 2 than expected. Biogeosciences, 19(12), 2969-2988.
  39. Paes, M. X., de Medeiros, G. A., Mancini, S. D., Bortoleto, A. P., de Oliveira, J. A. P., & Kulay, L. A. (2020). Municipal solid waste management: Integrated analysis of environmental and economic indicators based on life cycle assessment. Journal of cleaner production, 254, 119848.
  40. Parth, V., Murthy, N. N., & Saxena, P. R. (2011). Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications. Journal of Environmental research and management, 2(2), 027-034.
  41. Praveena, G. S., & Rao, P. V. V. P. (2016). Impact of leachate on soil properties in the dumpsite (A Case study of Greater Visakhapatnam). International Journal of Engineering Research and General Science, 4(1), 235-241.
  42. Rafiq, A., Rasheed, A., Arslan, C., Tallat, U., & Siddique, M. (2018). Estimation of greenhouse gas emissions from Muhammad wala open dumping site of Faisalabad, Pakistan. Geology, Ecology, and Landscapes, 2(1), 45-50.
  43. Rahman, S. M., Shams, S., & Mahmud, K. (2010). Study of solid waste management and its impact on climate change: a case study of Dhaka City in Bangladesh. Proceedings of International Conference on Environmental Aspects of Bangladesh (ICEAB), September 4, 2010, University of Kitakyushu, Kitakyushu, Japan (pp. 229-231).
  44. Rim-Rukeh, A. (2014). An assessment of the contribution of municipal solid waste dump sites fire to atmospheric pollution. Open Journal of Air Pollution, 3(3), 53-60.
  45. Rim-Rukeh, A. (2014). An assessment of the contribution of municipal solid waste dump sites fire to atmospheric pollution. Open Journal of Air Pollution, 3(3), 53-60.
  46. Salley, S. W., Herrick, J. E., Holmes, C. V., Karl, J. W., Levi, M. R., McCord, S. E., ... & Van Zee, J. W. (2018). A comparison of soil texture-by-feel estimates: implications for the citizen soil scientist. Soil Science Society of America Journal, 82(6), 1526-1537.
  47. Sharholy, M., Ahmad, K., Vaishya, R. C., & Gupta, R. D. (2007). Municipal solid waste characteristics and management in Allahabad, India. Waste management, 27(4), 490-496.
  48. Shayler, H., McBride, M., & Harrison, E. (2009). Sources and impacts of contaminants in soils. Cornell Waste Management Institute. https://cwmi.css.cornell.edu/sourcesandimpacts.pdf
  49. Sheppard, S. C., Sheppard, M. I., Gaudet, C., Cureton, P. M., & Wong, M. P. (1992). The development of assessment and remediation guidelines for contaminated soils, a review of the science. Canadian Journal of Soil Science, 72(4), 359-394.
  50. Smith, C. J., Hopmans, P., & Cook, F. J. (1996). Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia. Environmental pollution, 94(3), 317-323.
  51. Steffan, J. J., Brevik, E. C., Burgess, L. C., & Cerda, A. (2018). The effect of soil on human health: an overview. European journal of soil science, 69(1), 159-171.
  52. Thomas, G. W., & Hargrove, W. L. (1984). The chemistry of soil acidity. Soil acidity and liming, 12, 3-56.
  53. Tonon, G., Sohi, S., Francioso, O., Ferrari, E., Montecchio, D., Gioacchini, P., ... & Powlson, D. (2010). Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK. European Journal of Soil Science, 61(6), 970-979.
  54. U.S. Environmental Protection Agency. (2023, January). Overview of greenhouse gases. https://www.epa.gov/ghgemissions/overview-greenhousegases
  55. Varallyay, G. (1992). Effects of global climate changes on soils. Magyar Tudomany;(Hungary), 37(9).
  56. Voutsa, D., Grimanis, A., & Samara, C. (1996). Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environmental pollution, 94(3), 325-335.
  57. Whalen, J. K., Bottomley, P. J., & Myrold, D. D. (2000). Carbon and nitrogen mineralization from light-and heavy-fraction additions to soil. Soil Biology and Biochemistry, 32(10), 1345-1352.
  58. Yedla, S., & Sindhu, N. T. (2016). Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India. Waste Management & Research, 34(6), 553-563.