과제정보
본 연구는 문화체육관광부 및 한국콘텐츠진흥원의 2023년도 문화체육관광 연구개발사업으로 수행되었음 (과제명: 아바타 개성표현을 위한 유니버설 패션 창작 플랫폼 기술개발, 과제번호: RS-2023-00228331, 기여율: 100%)
참고문헌
- Jungjin Lee, Sangwoo Lee, Younghui Kim, and Junyong Noh. Screenx: Public immersive theatres with uniform movie viewing experiences. IEEE transactions on visualization and computer graphics, 23(2):1124-1138, 2016.
- Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. Foveated 3d graphics. ACM transactions on Graphics (tOG), 31(6):1-10, 2012.
- Sanghoon Lee, Marios S Pattichis, and Alan C Bovik. Foveated video quality assessment. IEEE Transactions on Multimedia, 4(1):129-132, 2002. https://doi.org/10.1109/6046.985561
- Cornelius Weber and Jochen Triesch. Implementations and implications of foveated vision. Recent Patents on Computer Science, 2(1):75-85, 2009.
- Mohammed Yeasin and Rajeev Sharma. Foveated vision sensor and image processing-a review. Machine Learning and Robot Perception, pages 57-98, 2005.
- David V Wick, Ty Martinez, Sergio R Restaino, and BR Stone. Foveated imaging demonstration. Optics Express, 10(1):60-65, 2002. https://doi.org/10.1364/OE.10.000060
- Zhou Wang and Alan C Bovik. Foveated image and video coding. Digital Video, Image Quality and Perceptual Coding, pages 431-457, 2006.
- Loic Dehan, Wiebe Van Ranst, Patrick Vandewalle, and Toon Goedeme. Complete and temporally consistent video out-painting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 687-695, 2022.
- Amit Aides, Tamar Avraham, and Yoav Y Schechner. Multiscale ultrawide foveated video extrapolation. In 2011 IEEE International Conference on Computational Photography (ICCP), pages 1-8. IEEE, 2011.
- Tamar Avraham and Yoav Y Schechner. Ultrawide foveated video extrapolation. IEEE Journal of Selected Topics in Signal Processing, 5(2):321-334, 2010.
- Sangwoo Lee, Jungjin Lee, Bumki Kim, Kyehyun Kim, and Junyong Noh. Video extrapolation using neighboring frames. ACM Transactions on Graphics (TOG), 38(3):1-13, 2019.
- Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4104-4113, 2016.
- Onur Ozyesil, Vladislav Voroninski, Ronen Basri, and Amit Singer. A survey of structure from motion*. Acta Numerica, 26:305-364, 2017. https://doi.org/10.1017/S096249291700006X
- Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes Kopf. Flow-edge guided video completion. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XII 16, pages 713-729. Springer, 2020.
- Yu Kong and Yun Fu. Human action recognition and prediction: A survey. International Journal of Computer Vision, 130(5):1366-1401, 2022. https://doi.org/10.1007/s11263-022-01594-9
- Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2625-2634, 2015.
- Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221-231, 2012.
- Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in videos. Advances in neural information processing systems, 27, 2014.
- Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal features with 3d convolutional networks. In Proceedings of the IEEE international conference on computer vision, pages 4489-4497, 2015.
- Xin Liu, Silvia L Pintea, Fatemeh Karimi Nejadasl, Olaf Booij, and Jan C Van Gemert. No frame left behind: Full video action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14892-14901, 2021.
- Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 724-732, 2016.
- Emre Akbas and Miguel P Eckstein. Object detection through search with a foveated visual system. PLoS computational biology, 13(10):e1005743, 2017.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.
- Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video understanding. In Proceedings of the IEEE/CVF international conference on computer vision, pages 7083-7093, 2019.
- Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.
- Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent video depth estimation. ACM Transactions on Graphics (ToG), 39(4):71-1, 2020.