DOI QR코드

DOI QR Code

Planning Non-Invasive Conservation Genetic Experiments Based on Factors Affecting DNA Amplification Using Fecal Samples of Korean Long-Tailed Goral (Naemorhedus caudatus)

  • Received : 2024.07.10
  • Accepted : 2024.07.23
  • Published : 2024.08.01

Abstract

In this review, we compared the success rates of DNA amplification and introduced the efficient non-invasive sampling of fecal samples collected from captive and wild Korean long-tailed gorals (Naemorhedus caudatus) by referring to previous non-invasive studies, including three important references (Kim et al., 2008; Kim, 2021; Kim, 2022). A large difference in PCR success rates in the captive and wild populations was observed for mitochondrial (100 and 70.0%), sex-linked (44.4 and 20.8%), and microsatellite markers (73.9 and 34.8%, respectively). Out of the three types of genetic markers, the mitochondrial maker showed the highest success rate, followed by microsatellite and sex-linked markers. In addition, we estimated two factors that affected the PCR success, including the length of the amplified fragments (long, medium, and short) and the type of primer (universal and specific) in fecal samples from a captive population. The length of the PCR fragment was inversely proportional to the PCR success (5.3, 44.4, and 55.6% for long, medium, and short fragments, respectively), and the specific primer set (100%) was more efficient than the universal primer set (60.0%). This review is fundamental but would be greatly helpful for new non-invasive conservation genetic studies, particularly those that use fecal samples from captive and wild populations of rare endangered species. We recommend beginning conservation genetic experiments using mitochondrial markers and then nuclear markers, such as microsatellite and sex-linked markers, to save time, costs, and labor.

Keywords

Acknowledgement

This work was supported in part by the National Institute of Ecology, funded by the Ministry of Environment (MOE) of the Republic of Korea (No. NIE-B-2024-18). It was also partially supported by the Research Institute for Veterinary Science and the Brain Korea 21 Program for Veterinary Science, Seoul National University. We thank Professor H. Lee and Professor Y. J. Won for helping with conducting previous Korean goral studies and Dr. H. J. Bae for giving comments for this review paper.

References

  1. An, J.H. (2006). Development and characterization of microsatellite markers for endangered Korean goral (Nemorhaedus caudatus raddeanus) and its molecular phylogenetic status. Doctoral dissertation. Seoul National University, Seoul.
  2. Birky, C., Fuerst, P., and Maruyama, T. (1989). Organelle gene diversity under migration, mutation and drift: Equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121, 613-627. https://doi.org/10.1093/genetics/121.3.613 [PMID: 2714640 PMCID: PMC1203645]
  3. Byrne, M.S., Peralta, D.M., Ibanez, E.A., Nardelli, M., and Tunez, J.I. (2021). Non-invasive sampling techniques applied to conservation genetic studies in mammals. In M. Nardelli, and J.I. Tunez (Eds.), Molecular Ecology and Conservation Genetics of Neotropical Mammals (pp. 63-83). Springer https://doi.org/10.1007/978-3-030-65606-5_4
  4. Chame, M. (2003). Terrestrial mammal feces: A morphometric summary and description. Mem Inst Oswaldo Gruz, Rio de Janeiro, 98, 71-94. https://doi.org/10.1590/s0074-02762003000900014 [PMID: 12687767]
  5. Dalen, L., Gotherstrom, A., and Angerbjorn, A. (2004). Identifying species from pieces of feces. Conservation Genetics, 5, 109-111.
  6. Frantzen, M.A.J., Silk, J.B., Ferguson, J.W., Wayne, R.K., and Kohn, M.H. (1998). Empirical evaluation of preservation methods for fecal DNA. Molecular Ecology, 7, 1423-1428. https://doi.org/10.1046/j.1365-294x.1998.00449.x [PMID: 9787450]
  7. Kim, B.J. (2021). Simple assessment of taxonomic status and genetic diversity of Korean long-tailed goral (Naemorhedus caudatus) based on partial mitochondrial Cytochrome b gene using non-invasive fecal samples. Proceedings of the National Institute of Ecology, 2, 32-41. https://doi.org/10.22920/PNIE.2021.2.1.32
  8. Kim, B.J. (2022). Microsatellite markers for non-invasive examination of individual identity, genetic variation, and population differentiation in two populations of Korean long-tailed goral (Naemorhedus caudatus). Proceedings of the National Institute of Ecology, 3, 191-198. https://doi.org/10.22920/PNIE.2022.3.4.191
  9. Kim, B.J., Lee, Y.S., An, J., Park, H.C., Okumura, H., Lee, H., et al. (2008). Species and sex identification of the Korean goral (Nemorhaedus caudatus) by molecular analysis of non-invasive samples. Molecules and Cell, 26, 314-318. https://doi.org/10.1016/S1016-8478(23)14001-5
  10. Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo S, Villablanca, F.X. et al. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceeding of the National Academic of Science USA, 86, 196-200. https://doi.org/10.1073/pnas.86.16.6196 [PMID: 2762322 PMCID: PMC297804]
  11. Kohn, M.H., York, E.C., Kamradt, D.A., Haught, G., Sauvajot, R.M., and Wayne, R.K. (1999). Estimating population size by genotyping faeces. Proceedings of the Royal Society of London Series B, 266, 657-663. https://doi.org/10.1098/rspb.1999.0686 [PMID: 10331287 PMCID: PMC1689828]
  12. Lee, S., Kim, B.J., and Bhang, K.J. (2019). Habitat analysis of endangered Korean long-tailed goral (Naemorhedus caudatus raddeanus) with weather forecasting model. Sustainability, 11, 6086. https://doi.org/10.3390/su11216086
  13. Lucchini, V., Fabbri, E., Marucco, F., Ricci, S., Boitani, L., and Randi, E. (2002). Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the Western Italian Alps. Molecular Ecology, 11, 857-868. https://doi.org/10.1046/j.1365-294x.2002.01489.x [PMID: 11975702]
  14. Min, M.S., Okumura, H., Jo, D.J., An, J.H., Kim, K.S., Kim, C.B., et al. (2004). Molecular phylogenetic status of the Korean goral and Japanese serow based on partial sequences of the mitochondrial cytochrome b gene. Molecules and Cells, 17, 365-372. https://doi.org/10.1016/S1016-8478(23)13052-4 [PMID: 15179056]
  15. Ministry of Environment (2002). New Technique for the Restoration of Endangered Species in Korea, Gwacheon: Ministry of Environment.
  16. Murphy, M.A., Waits, L.P., and Kendall, K.C. (2000). Quantitative evaluation of fecal drying methods for brown bear DNA analysis. Wildlife Society Bulletin, 28, 951-957. https://www.jstor.org/stable/3783853
  17. Nsubuga, A.M., Robbins, M.M., Roeder, A.D., Morin, P.A., Boesch, C., and Vigilant, L. (2004). Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology, 13, 2089-2094. https://doi.org/10.1111/j.1365-294X.2004.02207.x [PMID: 15189228]
  18. Poole, K.G., Mowat, G., and Fear, D.A. (2001). DNA-based population estimate for grizzly bears Ursus arctos in Northeastern British Columbia, Canada. Wildlife Biology, 7, 105-115. https://doi.org/10.2981/wlb.2001.014
  19. Roon, D.A., Waits, L.P., and Kendall, K.C. (2003). A quantitative evaluation of two methods for preserving hair samples. Molecular Ecology Notes, 3, 163-166. https://doi.org/10.1046/j.1471-8286.2003.00358.x
  20. Taberlet, P., and Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society, 68, 41-55. https://doi.org/10.1111/j.1095-8312.1999.tb01157.x
  21. Waits, L.P. (2004). Using noninvasive genetic sampling to detect and estimate abundance of rare wildlife species. In W.L. Thomas (Ed.), Sampling rare or elusive species: concepts, designs and techniques for estimating population parameters. (pp. 211-228). Island Press.
  22. Waits, L.P., and Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. Journal of Wildlife Management, 69, 1419-1433. https://doi.org/10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2
  23. Wehausen, J.D., Ramey, II R.R., and Epps, C.W. (2004). Experiments in DNA extraction and PCR amplification from bighorn sheep feces: The importance of DNA extraction method. Journal of Heredity, 95, 503-509. https://doi.org/10.1093/jhered/esh068 [PMID: 15475396]
  24. Yamamoto, K., Tsubota, T., Komatsu, T., Katayama, A., Murase T., Kita, I., and Kudo, T. (2002). Sex identification of Japanese black bear, Ursus thibetanus japonicus, by PCR based on amelogenin gene. Journal of Veterinary Medical Science, 64, 505-508. https://doi.org/10.1292/jvms.64.505 [PMID: 12130835]
  25. Yang, B.G. (2002). Systematics, ecology and current population status of the goral, Naemorhedus caudatus, in Korea. Doctoral dissertation. Chungbuk National University, Cheongju.