Acknowledgement
The project was funded by the National Science Centre, Poland, and allocated on the basis of the decision No. DEC-2021/43/B/ST8/00845 of 2022-05-23 - Contract No. UMO-2021/43/B/ST8/00845.
References
- Aktepe, R. and Erkal, B.G. (2023), „State-of-the-art review on measurement techniques and numerical modeling of geometric imperfections in cold-formed steel members", J. Construct. Steel Res., 207, 107942. https://doi.org/10.1016/j.jcsr.2023.107942.
- Aktepe, R. and Erkal, B.G. (2023a), "Experimental and numerical study on flexural behaviour of cold-formed steel hat-shaped beams with geometrical imperfections", J. Construct. Steel Res., 202, 107774. https://doi.org/10.1016/j.jcsr.2023.107774.
- Ali, M.A., Tomko, M., Demjan, I. and Kvocak, V. (2012), "Thin-walled cold-formed compressed steel members and the problem of initial imperfections", Procedia Eng., 40, 8-13. https://doi.org/10.1016/j.proeng.2012.07.047.
- Arrayago, I., Rasmussen, K.J. and Real, E. (2020), "Statistical analysis of the material, geometrical and imperfection characteristics of structural stainless steels and members", J. Construct. Steel Res., 175, 106378. https://doi.org/10.1016/j.jcsr.2020.106378.
- Bernard, E., Coleman, R. and Bridge, R. (1999), "Measurement and assessment of geometric imperfections in thin-walled panels", Thin-Wall. Struct., 33(2), 103-126. https://doi.org/10.1016/s0263-8231(98)00043-3.
- Bologna, F., Tannous, M., Romano, D. and Stefanini, C. (2022), "Automatic welding imperfections detection in a smart factory via 2-D laser scanner", J. Manufact. Processes, 73, 948-960. https://doi.org/10.1016/j.jmapro.2021.10.046.
- Calladine, C. (1995), "Understanding imperfection-sensitivity in the buckling of thin-walled shells", Thin-Wall. Struct., 23(1-4), 215-235. https://doi.org/10.1016/0263-8231(95)00013-4.
- Chen, B., Wang, Y., Xu, D., Yuan, H. and Yan, L. (2023), "Finite element analysis and proposed design rules for 304D high-strength stainless steel I-shaped members in shear", J. Construct. Steel Res., 204, 107861. https://doi.org/10.1016/j.jcsr.2023.107861.
- Chen, B., Wang, Y., Xu, D., Yuan, H. and Yan, L. (2023), "Finite element analysis and proposed design rules for 304D high-strength stainless steel I-shaped members in shear", J. Construct. Steel Res., 204, 107861. https://doi.org/10.1016/j.jcsr.2023.107861.
- Chen, Y., Chen, W., Hao, H. and Xia, Y. (2022), "Damage evaluation of a welded beam-column joint with surface imperfections subjected to impact loads", Eng. Struct. Eng. Struct., 261, 114276. https://doi.org/10.1016/j.engstruct.2022.114276.
- Chen, Y., Chen, W., Hao, H. and Zhou, X. (2022), "Impact behavior of beam-column joint with geometric imperfections at weld root", Eng. Struct. Eng. Struct., 266, 114611. https://doi.org/10.1016/j.engstruct.2022.114611.
- Combescure, A. (1997), "Influence of initial imperfections on the collapse of thin walled structures", Studies Appl. Mech., 385-394. https://doi.org/10.1016/s0922-5382(97)80040-2.
- Couto, C. and Real, P.V. (2019), "Numerical investigation on the influence of imperfections in the local buckling of thin-walled I-shaped sections", Thin-Wall. Struct., 135, 89-108. https://doi.org/10.1016/j.tws.2018.10.039.
- Couto, C. and Real, P.V. (2021), "The influence of imperfections in the critical temperature of I-section steel members", J. Construct. Steel Res., 179, 106540. https://doi.org/10.1016/j.jcsr.2021.106540.
- Dar, M.A., Fayaz, S.J., Rather, S., Dar, A. and Hajirasouliha, I. (2023), "Incremental stiffening approach for CFS built-up-beams with large imperfections: Tests and flexural-behaviour", Structures, 53, 1318-1340. https://doi.org/10.1016/j.istruc.2023.05.003.
- Dubina, D. and Ungureanu, V. (2023), "Local/distortional and overall interactive buckling of thin-walled cold-formed steel columns with open cross-section", Thin-Wall. Struct., 182, 110172. https://doi.org/10.1016/j.tws.2022.110172.
- EN 1993-1-3 (2008), Eurocode 3, Design of Steel Structures. Part 1-3 General Rules. Supplementary Rules for Structures Made of Sections and Cold-Formed Plates, PKN, Warsaw 2008.
- Farzanian, S., Louhghalam, A., Schafer, B. and Tootkaboni, M. (2023), "Geometric imperfections in CFS structural members: Part I: A review of the basics and some modeling strategies", Thin-Wall. Struct., 186, 110619. https://doi.org/10.1016/j.tws.2023.110619.
- Farzanian, S., Louhghalam, A., Schafer, B. and Tootkaboni, M. (2023a), "Geometric imperfections in CFS structural members, Part II: Data-driven modeling and probabilistic validation", Thin-Wall. Struct., 185, 110620. https://doi.org/10.1016/j.tws.2023.110620.
- Fasoulakis, Z., Vamvatsikos, D. and Papadopoulos, V. (2021), "Stability of single-bolted thin-walled steel angle members with stochastic imperfections", J. Struct. Eng., 147(8). https://doi.org/10.1061/(asce)st.1943-541x.0003061.
- Feng, S., Duan, Y., Yao, C., Yang, H., Liu, H., Wang, B. and Hao, P. (2022), "A Gaussian process-driven worst realistic imperfection method for cylindrical shells by limited data", Thin-Wall. Struct., 181, 110130. https://doi.org/10.1016/j.tws.2022.110130.
- Garifullin, M. and Nackenhorst, U. (2015), "Computational analysis of cold-formed steel columns with initial imperfections", Procedia Eng., 117, 1073-1079. https://doi.org/10.1016/j.proeng.2015.08.239.
- Garstecki, A., Kakol, W. and Rzeszut, K. (2002), "Classification of local-sectional geometric imperfections of steel thin-walled cold-formed sigma members", Found. Civil Enviro. Eng., 87-96.
- Godoy, L.A. (1996), "Thin-walled structures with structural imperfections, analysis and behavior", Pergamon, 978-0-08-042266-4.
- Godoy, L.A. (1998), "Stresses and pressures in thin-walled structures with damage and imperfections", Thin-Wall. Struct., 32(1-3), 181-206. https://doi.org/10.1016/s0263-8231(98)00032-9.
- Grenda, M. and Paczos, P. (2019), "Experimental and numerical study of local stability of non-standard thin-walled channel beams", J. Theoretic. Appl. Mech. Mechanika Teoretyczna I Stosowana, 57(3), 549-562. https://doi.org/10.15632/jtampl/109601.
- Halabi, Y. and Alhaddad, W. (2020), "Manufacturing, applications, analysis and design of cold-formed steel in engineering structures: A review", Int. J. Adv. Eng. Res. Sci., 7(2), 11-34. https://doi.org/10.22161/ijaers.72.3.
- Hemmatnezhad, M., Iarriccio, G., Zippo, A. and Pellicano, F. (2022), "Modal localization in vibrations of circular cylindrical shells with geometric imperfections", Thin-Wall. Struct., 181, 110079. https://doi.org/10.1016/j.tws.2022.110079.
- Huang, L., Yang, W., Shi, T. and Qu, J. (2020), "Local and distortional interaction buckling of cold-formed thin-walled high strength lipped channel columns", Int. J. Steel Struct. Int. J. Steel Struct., 21(1), 244-259. https://doi.org/10.1007/s13296-020-00436-z.
- Hubner, S.T., Simmen, K., Breitbarth, A.M.M. and Notni, G. (2021), "Standard-compliant detection of fillet weld surface imperfections for MAG-welding using a 3D-line scanner", Dimensional Optical Metrology Inspection Practical Applications X, 117320A. https://doi.org/10.1117/12.2588536
- Ismail Mahmud, J. and Jailani, A. (2023), "Buckling of an imperfect spherical shell subjected to external pressure", Ocean Eng., 275, 114118. https://doi.org/10.1016/j.oceaneng.2023.114118.
- Jasion, P., Pawlak, A. and Paczos, P. (2021), "Buckling and post-buckling behaviour of selected cold-formed C-beams with atypical flanges", Eng. Struct. Eng. Struct., 244, 112693. https://doi.org/10.1016/j.engstruct.2021.112693.
- Jinwu, X. (2004), "3D detection technique for surface defects of steel plates based on linear laser", J. Univ. Sci. Technol., Beijing.
- Jun, S., Hongbin, Y., Dihong, Z., Bin, Z. and Xiande., L. (2019), "Three-dimensional laser scanning-based high-precision steel structure quality detection device".
- Jurdeczka, U. (2020), "Model-based analysis of constructional steel structures exemplified by dimensional checking on railway car shells using 3D scanning", J. Sensors Sensor Syst., 9(1), 109-116. https://doi.org/10.5194/jsss-9-109-2020.
- Kolakowski, Z., Kubiak, T., Zaczynska, M. and Kazmierczyk, F. (2020), "Global-distortional buckling mode influence on post-buckling behaviour of lip-channel beams", Int. J. Mech. Sci., 184, 105723. https://doi.org/10.1016/j.ijmecsci.2020.105723.
- Korsun, N. and Prostakishina, D. (2019), "Bearing capacity of steel thin-walled profiles in reliability assessment", E3S Web of Conferences, 97, 04049. https://doi.org/10.1051/e3sconf/20199704049.
- Laim, L., Rodrigues, J.P.C. and Craveiro, H.D. (2015), "Flexural behaviour of beams made of cold-formed steel sigma-shaped sections at ambient and fire conditions", Thin-Wall. Struct., 87, 53-65. https://doi.org/10.1016/j.tws.2014.11.004.
- Li, B., Wang, Y., Zhang, Y., Meng, X., Yuan, H. and Zhi, X. (2022), "Flexural buckling of extruded high-strength aluminium alloy SHS columns", Thin-Wall. Struct., 179, 109717. https://doi.org/10.1016/j.tws.2022.109717.
- Li, S. and Zhao, O. (2022), "Local-flexural interactive buckling behaviour and resistance of press-braked stainless steel slender channel section columns", Eng. Struct. Eng. Struct., 270, 114871. https://doi.org/10.1016/j.engstruct.2022.114871.
- Luo, Y. and Zhan, J. (2020), "Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections", Struct. Multidiscipl. Optimiz., 62(6), 3367-3382. https://doi.org/10.1007/s00158-020-02738-6.
- Maali, M., Aydin, A.C., Showkati, H., Fatemi, S.M. and Sagiroglu, M. (2018), "Longitudinal imperfections on thin walled cylindrical shells", J. Civil Environ. Eng., 08(02). https://doi.org/10.4172/2165-784x.1000309.
- Machavolu, S.S.P.K., Michael, T.C., Jebaseelan, D.D., Karthik, B. and Panneerselvam, D. (2023), "Risk assessment of strain hardened pipe bends with shape imperfections under in-plane closing bending moment", Mater. Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.214.
- Mageirou, G. and Lemonis, M. (2021), "Influence of imperfections on the progressive collapse of steel moment resisting frames", J. Construct. Steel Res., 183, 106744. https://doi.org/10.1016/j.jcsr.2021.106744.
- Mahidan, F. and Ifayefunmi, O. (2021), "The imperfection sensitivity of axially compressed steel conical shells - Lower bound curve", Thin-Wall. Struct., 159, 107323. https://doi.org/10.1016/j.tws.2020.107323.
- Martins, A., Dinis, P., Camotim, D. and Providencia, P. (2015), "On the relevance of local-distortional interaction effects in the behaviour and design of cold-formed steel columns", Comput. Struct., 160, 57-89. https://doi.org/10.1016/j.compstruc.2015.08.003.
- Martins, A.D., Camotim, D., Goncalves, R. and Dinis, P.B. (2018), "On the mechanics of local-distortional interaction in thin-walled lipped channel columns", Thin-Wall. Struct., 125, 187-202. https://doi.org/10.1016/j.tws.2017.12.029.
- Matsubara, G.Y., De M Batista, E. and Salles, G.C. (2019), "Lipped channel cold-formed steel columns under local-distortional buckling mode interaction", Thin-Wall. Struct., 137, 251-270. https://doi.org/10.1016/j.tws.2018.12.041.
- Mehretehran, A.M. and Maleki, S. (2022), „Axial buckling of imperfect cylindrical steel silos with isotropic walls under stored solids loads: FE analyses versus Eurocode provisions", Eng. Fail. Anal., 137, 106282. https://doi.org/10.1016/j.engfailanal.2022.106282.
- Mykhailo, L. and Isaak, I. (2011), "Influence of initial imperfections upon the operation of beams with a corrugated wall".
- Nemer, S. and Papp, F. (2021), "Influence of imperfections in the buckling resistance of steel beam-columns under fire", Pollack Periodica, 16(2), 1-6. https://doi.org/10.1556/606.2021.00303.
- Obst, M., Rodak, M. and Paczos, P.R. (2016), "Limit load of cold formed thin-walled nonstandard channel beams", J. Theoretic. Appl. Mechanics/Mechanika Teoretyczna I Stosowana, 1369. https://doi.org/10.15632/jtam-pl.54.4.1369
- Paczos, P. and Pawlak, A.M. (2021), "Experimental optical testing and numerical verification by CuFSM of compression columns with modified Channel Sections", Materials, 14(5), 1271. https://doi.org/10.3390/ma14051271.
- Pastor, M., Casafont, M., Bonada, J. and Roure, F. (2014), "Imperfection amplitudes for nonlinear analysis of open thin-walled steel cross-sections used in rack column uprights", ThinWall. Struct., 76, 28-41. https://doi.org/10.1016/j.tws.2013.10.025.
- Pham, N.H. (2023), "Impacts of geometric imperfections on global buckling behaviors of cold-rolled aluminium alloy channel beams", Mater. Today: Proceedings, 85, 14-18. https://doi.org/10.1016/j.matpr.2023.05.246.
- Pircher, M., Berry, P., Ding, X. and Bridge, R. (2001), "The shape of circumferential weld-induced imperfections in thin-walled steel silos and tanks", Thin-Wall. Struct., 39(12), 999-1014. https://doi.org/10.1016/s0263-8231(01)00047-7.
- Rodrigues, L., Silva, F.M. and Goncalves, P.B. (2020), "Influence of initial geometric imperfections on the 1:1:1:1 internal resonances and nonlinear vibrations of thin-walled cylindrical shells", Thin-Wall. Struct., 151, 106730. https://doi.org/10.1016/j.tws.2020.106730.
- Roy, K., Chen, B., Fang, Z., Uzzaman, A., Chen, X. and Lim, J.B. (2021), "Local and distortional buckling behaviour of back-to-back built-up aluminium alloy channel section columns", Thin-Wall. Struct., 163, 107713. https://doi.org/10.1016/j.tws.2021.107713.
- Rzeszut, K. (2022), "Post-buckling behaviour of steel structures with different types of imperfections", Appl. Sci., 12(18), 9018. https://doi.org/10.3390/app12189018.
- Rzeszut, K. and Garstecki, A. (2016), "Stability of steel structures with clearances and imperfection", https://doi.org/10.7712/100016.2147.11151
- Saad-Eldeen, S., Garbatov, Y. and Soares, C.G. (2016), "Experimental strength analysis of steel plates with a large circular opening accounting for corrosion degradation and cracks subjected to compressive load along the short edges", Marine Struct., 48, 52-67. https://doi.org/10.1016/j.marstruc.2016.05.001.
- Santos, E.S.D., Batista, E.M. and Camotim, D. (2012), "Experimental investigation concerning lipped channel columns undergoing local-distortional-global buckling mode interaction", Thin-Wall. Struct., 54, 19-34. https://doi.org/10.1016/j.tws.2012.02.004.
- Santos, W.S., Landesmann, A. and Camotim, D. (2020), "Distortional strength of end-bolted CFS lipped channel columns: Experimental investigation, numerical simulations and DSM design", Thin-Wall. Struct., 148, 106469. https://doi.org/10.1016/j.tws.2019.106469.
- Sapalas, A., Sauciuvenas, G., Rasiulis, K., Griskevicius, M. and Gecys, T. (2019), "Behaviour of vertical cylindrical tank with local wall imperfections", J. Civil Eng. Manage., 25(3), 287-296. https://doi.org/10.3846/jcem.2019.9629.
- Schafer, B. and Pekoz, T. (1998), "Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses", J. Construct. Steel Res., 47(3), 193-210. https://doi.org/10.1016/s0143-974x(98)00007-8.
- Schafer, B., Li, Z. and Moen, C. (2010), "Computational modeling of cold-formed steel", Thin-Wall. Struct., 48(10-11), 752-762. https://doi.org/10.1016/j.tws.2010.04.008.
- Schneider, W., Timmel, I. and Hohn, K. (2005), "The conception of quasi-collapse-affine imperfections: A new approach to unfavourable imperfections of thin-walled shell structures", Thin-Wall. Struct., 43(8), 1202-1224. https://doi.org/10.1016/j.tws.2005.03.003.
- Selvaraj, S. and Madhavan, M. (2018), "Geometric imperfection measurements and validations on cold-formed steel channels using 3D noncontact laser scanner", J. Struct. Eng., 144(3). https://doi.org/10.1061/(asce)st.1943-541x.0001993.
- Somodi, B., Barnkopf, E. and Kovesdi, B. (2023), "Applicable equivalent bow imperfections in GMNIA for Eurocode buckling curves - SHS, RHS and welded box sections", J. Construct. Steel Res., 204, 107860. https://doi.org/10.1016/j.jcsr.2023.107860.
- Somogyi, J.R., Lovas, T., Szabo-Leone, K. and Feher, A. (2022), "Steels specimens' inspection with structured light scanner", Periodica Polytechnica. Civil Engineering/Periodica Polytechnica. Civil Engineering. https://doi.org/10.3311/ppci.20081.
- Su, A. and Zhao, O. (2022), "Experimental and numerical investigations of S960 ultra-high strength steel slender welded I-section columns failing by local-flexural interactive buckling", Thin-Wall. Struct., 180, 109898. https://doi.org/10.1016/j.tws.2022.109898.
- Sun, Y., Tian, K., Li, R. and Wang, B. (2020), "Accelerated Koiter method for post-buckling analysis of thin-walled shells under axial compression", Thin-Wall. Struct., 155, 106962. https://doi.org/10.1016/j.tws.2020.106962.
- Ungureanu, V. and Dubina, D. (2005), "Erosion effect of geometrical and material imperfections on the buckling strength of thin-walled cold-formed steel members", In Elsevier eBooks 497-504. https://doi.org/10.1016/b978-008044637-0/50072-x.
- Wagner, H., Huhne, C. and Janssen, M. (2020), "Buckling of cylindrical shells under axial compression with loading imperfections: An experimental and numerical campaign on low knockdown factors", Thin-Wall. Struct., 151, 106764. https://doi.org/10.1016/j.tws.2020.106764.
- Wang, H., Guilleminot, J., Schafer, B.W. and Tootkaboni, M. (2022), "Stochastic analysis of geometrically imperfect thin cylindrical shells using topology-aware uncertainty models", Comput. Meth. Appl. Mechanics and Engineering, 393, 114780. https://doi.org/10.1016/j.cma.2022.114780.
- Wheeler, A. and Pircher, M. (2003), "Measured imperfections in six thin-walled steel tubes", J. Construct. Steel Res., 59(11), 1385-1395. https://doi.org/10.1016/s0143-974x(03)00089-0.
- Xu, D., Wang, Y., Liu, X., Chen, B. and Bu, Y. (2023), "A novel method and modelling technique for determining the initial geometric imperfection of steel members using 3D scanning", Structures, 49, 855-874. https://doi.org/10.1016/j.istruc.2023.01.136.
- Xu, Y., Wu, B. and Zheng, B. (2023), "Full-field geometric imperfection and effect on cross-section capacity of circular steel tubes", J. Construct. Steel Res., 201, 107749. https://doi.org/10.1016/j.jcsr.2022.107749.
- Yang, L., Yin, F., Wang, J., Bilal, A., Ahmed, A.H. and Lin, M. (2022), "Local buckling resistances of cold-formed high-strength steel SHS and RHS with varying corner radius", Thin-Wall. Struct., 172, 108909. https://doi.org/10.1016/j.tws.2022.108909.
- Yu, C. and Schafer, B.W. (2006), "Finite element modeling of cold-formed steel beams validation and application", International Specialty Conference on ColdFormed Steel Structures (2006) - 18th International Specialty Conference on Cold-Formed Steel Structures.
- Zeinoddini, V. and Schafer, B. (2012), "Simulation of geometric imperfections in cold-formed steel members using spectral representation approach", Thin-Wall. Struct., 60, 105-117. https://doi.org/10.1016/j.tws.2012.07.001.
- Zeinoddini, V. and Schafer, B. (2012a), "Simulation of geometric imperfections in cold-formed steel members using spectral representation approach", Thin-Wall. Struct., 60, 105-117. https://doi.org/10.1016/j.tws.2012.07.001.
- Zhang, P. and Alam, M.S. (2022), "Compression tests of thin-walled cold-formed steel columns with Σ-shaped sections and patterned perforations distributed along the length", Thin-Wall. Struct., 174, 109082. https://doi.org/10.1016/j.tws.2022.109082.
- Zhang, P., and Alam, M. S. (2020). "Elastic buckling behaviour of Σ-shaped rack columns under uniaxial compression". Engineering Structures/Engineering Structures (Online), 212, 110469. https://doi.org/10.1016/j.engstruct.2020.110469
- Zheng, J., Li, K., Liu, S., Ge, H., Zhang, Z., Gu, C., Qian, H. and Hua, Z. (2018), "Effect of shape imperfection on the buckling of large-scale thin-walled ellipsoidal head in steel nuclear containment", Thin-Wall. Struct., 124, 514-522. https://doi.org/10.1016/j.tws.2018.01.001.
- Zhou, F., Huang, L. and Li, H.T. (2022), "Cold-formed stainless steel SHS and RHS columns subjected to local-flexural interactive buckling", J. Construct. Steel Res., 188, 106999. https://doi.org/10.1016/j.jcsr.2021.106999.
- Zidlicky, B. and Jandera, M. (2023), "An interaction formula proposed for stainless steel SHS and RHS beam-columns", Thin-Wall. Struct., 185, 110573. https://doi.org/10.1016/j.tws.2023.110573.