DOI QR코드

DOI QR Code

Performance of plastic hinges in FRP-strengthened compressive steel tubes for different strain-hardening response

  • Ali Reza Nazari (Department of Civil Engineering, Technical and Vocational University) ;
  • Farid Taheri (Department of Mechanical Engineering, Dalhousie University)
  • Received : 2024.04.08
  • Accepted : 2024.07.14
  • Published : 2024.08.10

Abstract

Plastic buckling of tubular columns has been attributed to rotational instability of plastic hinges. The present study aimed to characterize the plastic hinges for two different grades of strain-hardening, examined in mild-steel (MS) and stainless-teel (SS) tubes with un-strengthened and strengthened conditions. At the primary stage, the formerly tested experimental specimens were simulated using full-scale FE models considering nonlinear response of the materials, then to estimate the characteristics of the plastic hinges, a meso model was developed from the critical region of the tubes and the moment-rotation diagrams were depicted under pure bending conditions. By comparison of the relative rotation diagram obtained by the full-scale models with the critical rotation under pure bending, the length and critical rotation of the plastic hinges under eccentric axial load were estimated. The stress and displacement diagrams indicated the mechanism of higher energy absorption in the strengthened tubes, compared to unstrengthened specimens, due to establishment of stable wrinkles along the tubes. The meso model showed that by increasing the critical rotation in the strengthened MS tube equal to 1450%, the energy absorption of the tube has been enhanced to 2100%, prior to collapse.

Keywords

References

  1. ABAQUS (2010), Standard User's Manual, Dassault Systemes Simulia, Inc.
  2. Abramowicz, W. and Jones, N. (1986), "Dynamic progressive buckling of circular and square tubes", Int. J. Impact Eng., 4(4), 243-270. https://doi.org/10.1016/0734-743x(86)90017-5.
  3. Abramowicz, W. and Jones, N. (1997), "Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically", Int. J. Impact Eng., 19, 415-437. https://doi.org/10.1016/s0734-743x(96)00052-8.
  4. Afshan, S. and Gardner, L. (2013), "The continuous strength method for structural stainless steel design", Thin Wall Struct., 68, 42-49. https://doi.org/10.1016/j.tws.2013.02.011.
  5. Alexander, J. (1960), "An approximate analysis of the collapse of thin cylindrical shells under axial loading", Quart. J. Mech. Appl. Math., 13(1), 10-15. https://doi.org/10.1093/qjmam/13.1.10.
  6. Bardi, F.C. and Kyriakides, S. (2006), "Plastic buckling of circular tubes under axial compression-part I: Experiments", Int. J. Mech. Sci., 48, 830-841. https://doi.org/10.1016/j.ijmecsci.2006.03.005.
  7. Barrett, R.T. (1990), Fastener Design Manual, NASA Reference Publication, National Aeronautics and Space Administration Office of Management, Cleveland, USA.
  8. Batikha, M., Chen, J.F., Rotter, J.M. and Teng, J.G. (2009), "Strengthening metallic cylindrical shells against elephant's foot buckling with FRP, Thin Wall. Struct., 47(10) 1078-1091. https://doi.org/10.1016/j.tws.2008.10.012.
  9. Fam, A. and Shaat, A. (2007), "Finite element analysis of slender HSS columns strengthened with high modulus composites", Steel Compos. Struct., 7(1) 19-34. https://doi.org/10.12989/scs.2007.7.1.019.
  10. FEMA 356 (2000), NEHRP Guidelines for The Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
  11. Feng, P., Hu, L., Qian, P. and Ye, L. (2016), "Compressive bearing capacity of CFRP-aluminum alloy hybrid tubes", Compos. Struct., 140, 749e757. https://doi.org/10.1016/j.compstruct.2016.01.041.
  12. Gardner, L., Wang, F. and Liew, A. (2011), "Influence of strain hardening on the behaviour and design of steel structures", Int. J. Struct. Stab. Dyn., 11(5), 855-875. https://doi.org/10.1142/S0219455411004373.
  13. Ghazijahani, T.G., Jiao, H. and Holloway, D. (2015), "Fatigue experiments on circular hollow sections with CFRP reinforced cutouts", J. Constr. Steel Res., 106, 322-328. https://doi.org/10.1016/j.jcsr.2015.01.002.
  14. Goto, Y. and Zhang, C. (1999), "Plastic buckling transition modes in moderately thick cylindrical shells", J. Eng. Mech., 125(4), 426-434. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:4(426).
  15. Goto, Y., Zhang, C.H., Wang, Q.Y. and Obata, M. (1998), "A rigorous method for the analysis of localization of axisymmetric buckling patterns in thick cylindrical shells", Thin Wall. Struct., 31, 73-88. https://doi.org/10.1016/S0263-8231(98)00015-9.
  16. Grzebeita, R. (1990), "An alternate method for determining the behaviour of round stocky tubes subjected to an axial crush load", Thin Wall. Struct., 9, 61-89. https://doi.org/10.1016/0263-8231(90)90039-2.
  17. Harries, K.A., Peck, A.J. and Abraham, E.J. (2009), "Enhancing stability of structural steel sections using FRP", Thin Wall. Struct., 47, 1092-1101. https://doi.org/10.1016/j.tws.2008.10.007.
  18. Hashin, Z. (1965), "On elastic behavior of fibers reinforced materials of arbitrary transverse phase geometry", J. Mech. Phys. Solid., 13, 119-134. https://doi.org/10.1016/0022-5096(65)90015-3.
  19. Hashin, Z. (1985), "Cumulative damage theory for composite materials: Residual life and residual strength methods", Compos. Sci. Technol., 23, 1-19. https://doi.org/10.1016/0266-3538(85)90008-9.
  20. Huang, X. and Lu, G. (2003), "Axisymmetric progressive crushing of circular tubes", Int. J. Crashworth., 8(1), 87-95. https://doi.org/10.1016/S0020-7683(03)00111-2.
  21. Jahangir, H., Eidgahee, D.R. and Esfahani, M.R. (2022), "Bond strength characterization and estimation of steel fibre reinforced polymer-concrete composites", Steel Compos. Struct., 44(6), 803-816. https://doi.org/10.12989/scs.2022.44.6.803.
  22. Kabir, M.Z. and Nazari, A.R. (2011), "The study of ultimate strength in notched cylinders subjected to axial compression", J. Constr. Steel Res., 67, 1442-1452. https://doi.org/10.1016/j.jcsr.2011.03.018.
  23. Kabir, M.Z. and Nazari, A.R. (2012a), "Enhancing ultimate compressive strength of notch embedded steel cylinders using overwrap CFRP patch", Appl. Compos. Mater., 19, 723-738. https://doi.org/10.1007/s10443-011-9240-9.
  24. Kabir, M.Z. and Nazari, A.R. (2012b), "Experimental and numerical study on the nonlinear response of notched cylinders under compressive loading", J. Scientia Iranica, 19(3), 355-365. https://doi.org/10.1016/j.scient.2012.02.022.
  25. Kadhim, M.M.A., Wu, Z. and Cunningham, L.S. (2018), "Experimental study of CFRP strengthened steel columns subject to lateral impact loads", Compos. Struct., 185, 94-104. https://doi.org/10.1016/j.compstruct.2017.10.089.
  26. Kadhim, M.M.A., Wu, Z. and Cunningham, L.S. (2019), "Numerical study of full-scale CFRP strengthened open-section steel columns under transverse impact", Thin Wall. Struct., 140, 99-113. https://doi.org/10.1016/j.tws.2019.03.034.
  27. Karimian, M., Narmashiri, K., Shahraki, M. and Yousefi, O. (2017), "Structural behaviors of deficient steel CHS short columns strengthened using CFRP", J. Constr. Steel Res., 138, 555-564. https://doi.org/10.1016/j.conbuildmat.2016.09.099.
  28. Nabati, A. and Ghazijahani, T.G. (2020), "CFRP-reinforced circular steel tubes with cutout under axial loading", J. Constr. Steel Res., 164, 105775. https://doi.org/10.1016/j.jcsr.2019.105775.
  29. Nazari, A.R. and Taheri, F. (2021), "A parametric study into the influence of strain hardening slope on the stability and collapse responses of steel tubes under compressive loading", Struct., 33, 2152-2165. https://doi.org/10.1016/j.istruc.2021.05.029.
  30. Nazari, A.R. and Taheri, F. (2023), "Influence of material strain hardening on energy absorption of axially loaded steel tubular members via first wrinkling mechanism", Int. J. Crashworth., 29(3), 495-507. https://doi.org/10.1080/13588265.2023.2258640.
  31. Nazari, A.R., Kabir, M.Z. and Hosseni-Toudeshky, H. (2018) "Development of work-hardening performance in stainless-steel cylindrical columns by application of CFRP jackets", Compos. Struct., 203, 38-49. https://doi.org/10.1016/j.compstruct.2018.07.021.
  32. Shaat, A. and Fam, A. (2006), "Axial loading tests on short and long hollow structural steel columns retrofitted using carbon fibre reinforced polymers", Can. J. Civil Eng., 33(4), 458-470. https://doi.org/10.1139/l05-042.
  33. Shaat, A. and Fam, A. (2007), "Fiber-element model for slender HSS columns retrofitted with bonded high-modulus composites", J. Struct. Eng., 133(1), 85-95. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(85).
  34. Silvestre, N., Young, B. and Camotim, D. (2008), "Non-linear behaviour and load-carrying capacity of CFRP-strengthened lipped channel steel columns", Eng. Struct., 30, 2613-2630. https://doi.org/10.1016/j.engstruct.2008.02.010.
  35. Simhachalam, B., Srinivas, K. and Rao, C.L. (2014), "Energy absorption characteristics of aluminium alloy AA7XXX and AA6061 tubes subjected to static and dynamic axial load", Int. J. Crashworth., 19(2), 139-152. https://doi.org/10.1080/13588265.2013.878974.
  36. Sobel, L.H. and Newman, S.Z. (1980), "Plastic buckling of cylindrical shells under axial compression", J. Press. Ves. Technol., 102(1), 40-44. https://doi.org/10.1007/978-3-642-49334-8_18.
  37. Stronge, W.J. and Yu, T. (1993), Dynamic Models for Structural Plasticity, Springer-Verlag.
  38. Teng, J.G. and Hu, Y.M. (2007), "Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression", Constr. Build. Mater., 21, 827-838. https://doi.org/10.1016/j.conbuildmat.2006.06.016.
  39. Teng, J.G., Yu, T. and Fernando, D. (2012), "Strengthening of steel structures with fiber-reinforced polymer composites", J. Constr. Steel Res., 78, 131-143. https://doi.org/10.1016/j.jcsr.2012.06.011.
  40. Tvergaard, V. (1983), "On the transition from a diamond mode to an axisymmetric mode of collapse in cylindrical shells", Int. J. Solid. Struct., 19(10), 845-856. https://doi.org/10.1016/0020-7683(83)90041-0.
  41. Tvergaard, V. (1983), "Plastic buckling of axially compressed circular cylindrical shells", Thin Wall. Struct., 1, 139-163. https://doi.org/10.1016/0263-8231(83)90018-6.
  42. Uyaner, M. and Kara, M. (2007), "Dynamic response of laminated composites subjected to low-velocity impact", J. Compos. Mater., 41(24), 2877-2896. https://doi.org/10.1177/0021998307079971.
  43. Williams, A. (2011), Steel Structures Design: ASD/LRFD, McGraw-Hill Education, New York, USA.
  44. Wu, Z., Wu, Y. and Fahmi, M.F.M. (2020), Structures Strengthened with Bonded Composites, Woodhead Publishing, Elsevier.
  45. Yousefi, O., Narmashiri, K., Hedayat, A.A. and Karbakhsh, A. (2021), "Strengthening of corroded steel CHS columns under axial compressive loads using CFRP", J. Constr. Steel Res., 178, 106496. https://doi.org/10.1016/j.jcsr.2020.106496.
  46. Zhang, Z. and Taheri, F. (2004), "Dynamic pulse-buckling behavior of quasi-ductile carbon/epoxy and E-glass/epoxy laminated composite beams", Compos. Struct., 64, 269-274. https://doi.org/10.1016/j.compstruct.2003.08.008.
  47. Zhao, X.L. and Zhang, L. (2007), "State-of-the-art review on FRP strengthened steel structures", Eng. Struct., 29, 1808-1823. https://doi.org/10.1016/j.engstruct.2006.10.006.
  48. Zhao, O., Gardner, L. and Young, B. (2016), "Structural performance of stainless steel circular hollow sections under combined axial load and bending-Part 1: Experiments and numerical modelling", Thin Wall. Struct., 101, 231-239. https://doi.org/10.1016/j.tws.2015.12.003.