과제정보
The research described in this paper is financially supported by the Natural Science Foundation of Hunan Province (2021JJ50143). The supports are gratefully acknowledged.
참고문헌
- Amini, M.S., Sarfarazi, V. and Babanouri, N. (2021), "Influence of non-persistent joint sets on the failure behavior of concrete under uniaxial compression test", Comput. Concrete, 28(3), 289-309. https://doi.org/10.12989/cac.2021.28.3.289.
- Avadh, K., Jiradilok, P., Bolander, J.E. and Nagai, K. (2021), "Mesoscale simulation of pull-out performance for corroded reinforcement with stirrup confinement in concrete by 3D RBSM", Cement Concrete Compos., 116, 103895. https://doi.org/10.1016/j.cemconcomp.2020.103895.
- Bakhti, R., Benahmed, B., Laib, A. and Alfach, M.T. (2022), "New approach for computing damage parameters evolution in plastic damage model for concrete", Case Stud. Constr. Mater., 16, e00834. https://doi.org/10.1016/j.cscm.2021.e00834.
- Ballard, M.K., Amici, R., Shankar, V., Ferguson, L.A., Braginsky, M. and Kirby, R.M. (2022), "Towards an extrinsic, GG-XFEM approach based on hierarchical enrichments for modeling progressive fracture", Comput. Meth. Appl. Mech. Eng., 388, 114221. https://doi.org/10.1016/j.cma.2021.114221.
- Casolo, S. (2021), "Macroscale modeling of the orthotropic shear damage in the dynamics of masonry towers by RBSM", Eng. Fail. Anal., 130, 105744. https://doi.org/10.1016/j.engfailanal.2021.105744.
- Cervenka, V. (2002), "Computer simulation of failure of concrete structures for practice", 1st fib Congress, 289-304.
- Cervenka, V. and Margoldova, J. (1995), "Tension stiffening effect in smeared crack model", Proc. of the ASCE EMD Specialty Conference, University of Colorado Boulder, USA.
- Cervenka, V., Cervenka, J. and Kadlec, L. (2018), "Model uncertainties in numerical simulations of reinforced concrete structure", Struct. Concrete, 19(6), 2004-2016. https://doi.org/10.1002/suco.201700287.
- Comite Euro-international du Beton (1990), CEB-FIB Model Code 1990 First Draft, CEB, Pair, France.
- Gedik, Y.H., Nakamura, H., Yamamoto, Y. and Kunieda, M. (2011), "Evaluation of three-dimensional effects in short deep bemas using a rigid-body-spring-model", Cement Concrete Compos., 33(9), 978-991. https://doi.org/10.1016/j.cemconcomp.2011.06.004.
- Gribniak, V., Cervenka, V. and Kaklauskas, G. (2013), "Deflection prediction of reinforced concrete beams by design codes and computer simulation", Eng. Struct., 56, 2175-2186. https://doi.org/10.1016/j.engstruct.2013.08.045.
- Li, B., Jiang, J., Xiong, H., Zhan, Y., Wu, Z. and Cunningham, L. S. (2021), "Improved concrete plastic-damage model for FRP-confined concrete based on true tri-axial experiment", Compos. Struct., 269, 114051. https://doi.org/10.1016/j.compstruct.2021.114051.
- Lu, X., Ridha, M., Tan, V.B.C. and Tay, T.E. (2019), "Adaptive discrete-smeared crack (A-DiSC) model for multi-scale progressive damage in composites", Compos. Part A: Appl. Sci. Manuf., 125, 105513. https://doi.org/10.1016/j.compositesa.2019.105513.
- Markou, G. and Bakas, N.P. (2021), "Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis", Comput. Concrete, 28(6), 433-447. https://doi.org/10.12989/cac.2021.28.6.533.
- Mora, D.F. and Niffenegger, M. (2022), "A new simulation approach for crack initiation, propagation and arrest in hollow cylinders under thermal shock based on XFEM", Nucl. Eng. Des., 386, 111582. https://doi.org/10.1016/j.nucengdes.2021.111582.
- Mota, M.T., Fairbairn, E.M., Ribeiro, F.L., Rossi, P., Tailhan, J.L., Andrade, H.C. and Rita, M.R. (2021), "A 3D probabilistic model for explicit cracking of concrete", Comput. Concrete, 27(6), 549-562. https://doi.org/10.12989/cac.2021.27.6.549.
- Ngo, D. and Scordelis, A., (1967), "Nonlinear analysis of reinforced concrete beams", J. Am. Concrete Inst., 64(3), 152-163.
- Nooru-Mohamed, M.B. (1993), "Mixed-mode fracture of concrete: An experimental approach".
- Pham, D.C., Cui, X., Ren, X. and Lua, J. (2019), "A discrete crack informed 3D continuum damage model and its application for delamination migration in composite laminates", Compos. Part B: Eng., 165, 554-562. https://doi.org/10.1016/j.compositesb.2019.02.045.
- Rimkus, A., Cervenka, V., Gribniak, V. and Cervenka, J. (2020), "Uncertainty of the smeared crack model applied to RC beams", Eng. Fract. Mech., 233, 107088. https://doi.org/10.1016/j.engfracmech.2020.107088.
- Sarfarazi, V., Abharian, S., Babanouri, N. and Salari, R.H. (2021), "Interaction between a hole and a crack in different layouts: Experimental and numerical study on concrete", Comput. Concrete, 28(4), 415-432. https://doi.org/10.12989/cac.2021.28.4.415.
- Sarfarazi, V., Haeri, H., Shemirani, A.B., Zhu, Z. and Marji, M.F. (2018), "Experimental and numerical simulating of the crack separation on the tensile strength of concrete", Struct. Eng. Mech., 66(5), 569-582. https://doi.org/10.12989/sem.2018.66.5.569.
- Shemirani, A.B. (2022), "Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete bridge decks using ultra high-performance concrete and reinforced concrete", Comput. Concrete, 29(6), 407. https://doi.org/10.12989/cac.2022.29.6.407.
- Shi, F., Wang, D. and Yang, Q. (2022), "An XFEM-based numerical strategy to model three-dimensional fracture propagation regarding crack front segmentation", Theor. Appl. Fract. Mech., 118, 103250. https://doi.org/10.1016/j.tafmec.2022.103250.
- Shu, X., Luo, Y., Zhao, C., Dai, Z., Zhong, X. and Zhang, T. (2022), "Experimental study on the shear failure model for concrete under compression-shear loading", Comput. Concrete, 29(2), 81-92. https://doi.org/10.12989/cac.2022.29.2.081.
- Wang, L. and Bao, J. (2015), "Mesoscale computational simulation of the mechanical response of reinforced concrete members", Comput. Concrete, 15(2), 305-319. https://doi.org/10.12989/cac.2015.15.2.305.
- Wang, Z., Zhang, D., Gong, F., Mehrpay, S. and Ueda, T. (2019), "Mesoscale simulation of bond behaviors between concrete and reinforcement under the effect of frost damage with axisymmetric rigid body spring model", Constr. Build. Mater., 215, 886-897. https://doi.org/10.1016/j.conbuildmat.2019.04.232.
- Wu, J.Y. and Yao, J.R. (2022), "A model scaling approach for fracture and size effect simulations in solids: Cohesive zone, smeared crack bond and phase-field modes", Comput. Meth. Appl. Mech. Eng., 400, 115519. https://doi.org/10.1016/j.cma.2022.115519.
- Yin, A., Yang, X., Zhang, C., Zeng, G. and Yang, Z. (2015), "Three-dimensional heterogeneous fracture simulation of asphalt mixture under uniaxial tension with cohesive crack model", Constr. Build. Mater., 76, 103-117. https://doi.org/10.1016/j.conbuildmat.2014.11.065.
- Zhao, C., Shi, Z. and Zhong, X. (2021), "A proposal for an approach for meso scale modeling for concrete based on rigid body spring model", Comput. Concrete, 27(3), 283-295. https://doi.org/10.12989/cac.2021.27.3.283.
- Zhi, J. and Tay, T.E. (2020), "Interrogating failure mechanisms of notched composites through a discrete crack modeling approach", Compos. Sci. Technol., 196, 108203. https://doi.org/10.1016/j.compscitech.2020.108203.
- Zhong, X., Zhao, C., Liu, B., Shu, X. and Shen, M. (2018), "A 3D RBSM for simulating the failure process of RC structures", Struct. Eng. Mech., 65(3), 291-302. https://doi.org/10.12989/sem.2018.65.3.291.