DOI QR코드

DOI QR Code

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Mohammadhossein Goudarzfallahi (Mechanical Engineering Department, Science and Research branch, Islamic Azad University) ;
  • Ali Alinia Ziazi (Mechanical Engineering Department, Science and Research branch, Islamic Azad University)
  • 투고 : 2018.12.29
  • 심사 : 2021.05.11
  • 발행 : 2024.07.25

초록

In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

키워드

참고문헌

  1. Dabbagh, A., Golpaygani Sani, S. and Ebrahimi, F. (2023), "Piezoelectrically controlled wave propagation in laminates with auxetic core: Transient analysis incorporated with electrical stability monitoring", Eur. Phys. J. Plus, 138(9), 1-21. https://doi.org/10.1140/epjp/s13360-023-04405-3
  2. Ebrahimi, F. (2024), Mechanics of Auxetic Materials and Structures, CRC Press.
  3. Ebrahimi, F. and Dadashi, M. (2023), "Composite cylindrical shells with auxetic core on elastic foundation: A nonlinear dynamic analysis", Structures, 57, 105170. https://doi.org/10.1016/j.istruc.2023.105170
  4. Ebrahimi, F. and Parsi, M. (2023), "Wave propagation analysis of functionally graded graphene origami-enabled auxetic metamaterial beams resting on an elastic foundation", Acta Mechanica, 234(12), 6169-6190. http://doi.org/10.1007/s00707-023-03705-0
  5. Ebrahimi, F. and Ahari, M.F. (2024), "On the buckling of metagraphene- origami-enabled magnetostrictive nanoplates under temperature gradient", Acta Mechanica, 1-18. http://doi.org/10.1007/s00707-024-03861-x
  6. Ebrahimi, F. and Dabbagh, A. (2022), Mechanics of Multiscale Hybrid Nanocomposites, Elsevier.
  7. Ebrahimi, F. (2015), Graphene: New Trends and Developments, BoD-Books on Demand.
  8. Ebrahimi, F. and Dabbagh, A. (2020), Mechanics of Nanocomposites: Homogenization and Analysis. CRC Press.
  9. Ebrahimi, F., Dabbagh, A. and Civalek, O . (2019), "Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams", J. Vib. Control, 25(23-24), 2837-2849. https://doi.org/10.1177/10775463198610
  10. Ebrahimi, F. and Barati, M.R. (2019), "Vibration analysis of biaxially compressed double-layered graphene sheets based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(10), 854-865. https://doi.org/10.1080/15376494.2018.1430267
  11. Ebrahimi, F., Hosseini, S.H.S. and Bayrami, S.S. (2019), "Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: an analytical study", Thin Wall. Struct., 141, 293-307. http://doi.org/10.1016/j.tws.2019.04.038
  12. Ebrahimi, F., Nouraei, M. and Dabbagh, A. (2020), "Modeling vibration behavior of embedded graphene-oxide powderreinforced nanocomposite plates in thermal environment", Mech. Based Des. Struct., 48(2), 217-240. http://doi.org/10.1080/15397734.2019.1660185
  13. Ebrahimi, F. and Barati, M.R. (2018), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygrothermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021
  14. Ebrahimi, F. and Dabbagh, A. (2019), Wave Propagation Responses of Double-Layered Graphene Sheets in Hygrothermal Environment, Handbook of Graphene, Volume 8: Technology and Innovations, 289. https://doi.org/10.12989/sem.2018.65.6.645
  15. Hieu, P.T. and Tung, H.V. (2020), "Postbuckling behavior of carbon-nanotube-reinforced composite toroidal shell segments subjected to thermomechanical loadings", AIAA J., 58(7), 3187-3198. http://doi.org/10.2514/1.J059055
  16. Huang, H. and Han, Q. (2009), "Nonlinear elastic buckling and postbuckling of axially compressed functionally graded cylindrical shells", Int. J. Mech. Sci., 51(7), 500-507. https://doi.org/10.1016/j.ijmecsci.2009.05.002
  17. Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. and Vaziri, A. (2017), "Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties", Sci. Rep., 7(1), 46046. https://doi.org/10.1038/srep46046
  18. Kolken, H.M. and Zadpoor, A.A. (2017), "Auxetic mechanical metamaterials", RSC Adv., 7(9), 5111-5129. https://doi.org/10.1039/C6RA27333E
  19. Kiani, Y. (2018a), "NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates", Thin Wall. Struct., 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024
  20. Kiani, Y. (2018b), "Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation", Comput. Meth. Appl. Mech. Eng., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015
  21. Mahesh, V. (2022), "Nonlinear free vibration of multifunctional sandwich plates with auxetic core and magneto-electro-elastic facesheets of different micro-topological textures: FE approach", Mech. Adv. Mater. Struct., 29(27), 6266-6287. http://doi.org/10.1080/15376494.2021.1974619
  22. Mahinzare, M., Rastgoo, A. and Ebrahimi, F. (2024), "Nonlinear vibration of FG graphene origami auxetic sandwich plate including smart hybrid nanocomposite sheets", J. Eng. Mech., 150(4), 04024007. https://doi.org/10.1061/JENMDT.EMENG-7398
  23. Mahinzare, M., Rastgoo, A. and Ebrahimi, F. (2023), "On nonlinear vibration of piezo-electrically multi-scale hybrid nanocomposite sandwich plate including an auxetic core based on HSDT", Int. J. Struct. Stabil. Dyn., 24(5), 2450069. https://doi.org/10.1142/S021945542450069X
  24. Nam, V.H., Duc, V.M., Doan, C.V., Xuan, N.T. and Phuong, N.T. (2022), "Nonlinear postbuckling behavior of auxetic-core toroidal shell segments with Graphene reinforced face sheets under axial loads", Arch. Mech., 74. http://doi.org/10.24423/aom.3957
  25. Nguyen, T.P., Vu, M.D., Dang, T.D., Cao, V.D., Pham, T.H. and Vu, H.N. (2023), "An analytical approach of nonlinear buckling behavior of torsionally loaded auxetic core toroidal shell segments with graphene reinforced polymer coatings", Adv. Compos. Mater., 32(3), 400-418. http://doi.org/10.1080/09243046.2022.2110661
  26. Phuong, N.T., Van Doan, C., Duc, V.M., Giang, N.T. and Nam, V.H. (2023), "Analytical solution for nonlinear buckling of convex and concave auxetic-core toroidal shell segments with graphene-reinforced face sheets subjected to radial loads", Arch. Appl. Mech., 93(2), 621-634. https://doi.org/10.1007/s00419-022-02288-x
  27. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC press.
  28. Seyfi, A., Teimouri, A. and Ebrahimi, F. (2021), "Scale-dependent torsional vibration response of non-circular nanoscale auxetic rods", Waves Random Complex Med., 1-17. http://doi.org/10.1080/17455030.2021.1990441
  29. Shen, H.S. and Xiang, Y. (2018), "Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments", Comput. Meth. Appl. Mech. Eng., 330, 64-82. http://doi.org/10.1016/j.cma.2017.10.022
  30. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells", Compos. Struct., 93(10), 2496-2503. http://doi.org/10.1016/j.compstruct.2011.04.005
  31. Shen, H.S. (2014), "Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments", Compos. Struct., 116, 477-488. http://doi.org/10.1016/j.compstruct.2014.05.039
  32. Shen, H.S. and Xiang, Y. (2018), "Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments", Thin Wall. Struct., 124, 151-160. https://doi.org/10.1016/j.tws.2017.12.005
  33. Shen, H.S., Xiang, Y. and Lin, F. (2017), "Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments", Compos. Struct., 170, 80-90. https://doi.org/10.1016/j.compstruct.2017.03.001
  34. Sofiyev, A.H. and Kuruoglu, N.U.R.I. (2022), "Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation", Defence Technol., 18(2), 205-218. http://doi.org/10.1016/j.dt.2020.12.007
  35. Stein, M. and McElman, J.A. (1965), "Buckling of segments of toroidal shells", AIAA J., 3(9), 1704-1709. https://doi.org/10.2514/3.55185
  36. Van Tien, N., Duc, V.M., Nam, V.H., Phuong, N.T., Ho, L.S., Dong, D.T., Ly, L.N., Hung, D. and Minh, T.Q. (2022), "Nonlinear postbuckling of auxetic-core sandwich toroidal shell segments with CNT-reinforced face sheets under external pressure", Int. J. Struct. Stabil. Dyn., 22(1), 2250006. http://doi.org/10.1142/S0219455422500067
  37. Zhai, Z., Wu, L. and Jiang, H. (2021), "Mechanical metamaterials based on origami and kirigami", Appl. Phys. Rev., 8(4). http://doi.org/10.1063/5.0051088
  38. Zhao, S., Zhang, Y., Zhang, Y., Yang, J. and Kitipornchai, S. (2022), "Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models", Aerosp. Sci. Technol., 130, 107906. https://doi.org/10.1016/j.ast.2022.107906
  39. Zhao, S., Zhang, Y., Wu, H., Zhang, Y. and Yang, J. (2022), "Functionally graded graphene origami-enabled auxetic metamaterial beams with tunable buckling and postbuckling resistance", Eng. Struct., 268, 114763. https://doi.org/10.1016/j.engstruct.2022.114763
  40. Zhao, S., Zhang, Y., Zhang, Y., Zhang, W., Yang, J. and Kitipornchai, S. (2022), "Genetic programming-assisted micromechanical models of graphene origami-enabled metal metamaterials", Acta Materialia, 228, 117791. https://doi.org/10.1016/j.actamat.2022.117791