DOI QR코드

DOI QR Code

Monte Carlo simulation of spatial resolution of lens-coupled LYSO scintillator for intense pulsed gamma-ray imaging system with large field of view

  • Guoguang Li (Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education) ;
  • Liang Sheng (State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology) ;
  • Baojun Duan (State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology) ;
  • Yang Li (State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology) ;
  • Dongwei Hei (State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology) ;
  • Qingzi Xing (Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education)
  • Received : 2023.11.29
  • Accepted : 2024.02.12
  • Published : 2024.07.25

Abstract

In this paper, we use a Monte Carlo (MC) simulation based on Geant4 to investigate the influence of four parameters on the spatial resolution of the lens-coupled lutetium yttrium orthosilicate (LYSO) scintillator, including the thickness of the LYSO scintillator, the F-number and minification factor of the lens, and the incident position of the gamma-rays. Simulation results show that when the gamma-rays are incident along the lens axis, the smaller the thickness, the larger the F-number, the larger the minification factor, the higher the spatial resolution, with an isotropic point spread function (PSF). As the incident position of the gamma-rays deviates from the lens axis, the spatial resolution decreases, and the PSF becomes anisotropic. In addition, by analyzing the whole physical process of the lens-coupled LYSO scintillator from gamma-rays to secondary electrons to fluorescence photons, we aim to provide a detailed analysis of the influence of each parameter on the spatial resolution. The results show that the PSF of the secondary electrons energy deposition is almost constant in the simulation, which determines the upper limit of the spatial resolution. Meanwhile, the dispersion process of the fluorescence photons can explain the reason why each parameter affects the spatial resolution.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 12175183).

References

  1. T.J. Murphy, C.W. Barnes, R.R. Berggren, P. Bradley, S.E. Caldwell, R.E. Chrien, J. R. Faulkner, P.L. Gobby, N. Hoffman, J.L. Jimerson, K.A. Klare, C.L. Lee, J. M. Mack, G.L. Morgan, J.A. Oertel, F.J. Swenson, P.J. Walsh, R.B. Walton, R. G. Watt, M.D. Wilke, D.C. Wilson, C.S. Young, S.W. Haan, R.A. Lerche, M.J. Moran, T.W. Phillips, T.C. Sangster, R.J. Leeper, C.L. Ruiz, G.W. Cooper, L. Disdier, A. Rouyer, A. Fedotoff, V.Yu Glebov, D.D. Meyerhofer, J.M. Sources, C. Stockl, J. A. Frenje, D.G. Hicks, C.K. Li, R.D. Petrasso, F.H. Seguin, K. Fletcher, S. Padalino, R. K. Fisher, Nuclear diagnostics for the National Ignition facility, Rev. Sci. Instrum. 72 (2001) 773-779, https://doi.org/10.1063/1.1319356.
  2. D.A. Lemieux, H.B. Barber, G.P. Grim, T. Archuleta, V. Fatherley, D. Fastje, Testing of a gamma ray imaging system at the high intensity gamma source, in: Target Diagnostics Physics and Engineering for Inertial Confinement Fusion III, 2014, https://doi.org/10.1117/12.2066254.
  3. J.A. Frenje, Nuclear diagnostics for inertial confinement fusion (ICF) plasmas, Plasma Phys. Contr. Fusion 62 (2020), https://doi.org/10.1088/1361-6587/ab5137.
  4. Y. Kim, H.W. Herrmann, Gamma-ray measurements for inertial confinement fusion applications, Rev. Sci. Instrum. 94 (2023), https://doi.org/10.1063/5.0126969.
  5. P. Durrant, M. Dallimore, I. Jupp, D. Ramsden, The application of pinhole and coded aperture imaging in the nuclear environment, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 422 (1-3) (1999) 667-671, https://doi.org/10.1016/S0168-9002(98)01014-6.
  6. J. Zhang, Q. Yi, L. Li, F. Zhang, D. Chen, J. Chen, Z. Xi, H. Xie, J. Yang, F. Chen, D. Tang, Y. Chu, Simulation and experimental study of the angle-dependent sensitivity of the thick pinhole used for gamma imaging, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 915 (2019) 24-30, https://doi.org/10.1016/j.nima.2018.10.163.
  7. J.M. Mack, R.R. Berggren, S.E. Caldwell, C.R. Christensen, S.C. Evans, J. R. Faulkner Jr., R.L. Griffith, G.M. Hale, R.S. King, D.K. Lash, R.A. Lerche, J. A. Oertel, D.M. Pacheco, C.S. Young, Remarks on detecting high-energy deuterium-tritium fusion gamma rays using a gas Cherenkov detector, Radiat. Phys. Chem. 75 (2006) 551-556, https://doi.org/10.1016/j.radphyschem.2005.12.026.
  8. V.E. Fatherley, D.N. Fittinghoff, R.L. Hibbard, H.J. Jorgenson, J.I. Martinez, J. A. Oertel, D.W. Schmidt, C.S. Waltz, C.H. Wilde, P.L. Volegov, Aperture design for the third neutron and first gamma-ray imaging systems for the National Ignition Facility, Rev. Sci. Instrum. 89 (2018), https://doi.org/10.1063/1.5039328.
  9. D.N. Fittinghoff, N. Birge, V. Geppert-Kleinrath, Neutron imaging of inertial confinement fusion implosions, Rev. Sci. Instrum. 94 (2023), https://doi.org/10.1063/5.0124074.
  10. R. Mao, L. Zhang, R.-Y. Zhu, Optical and scintillation properties of inorganic scintillators in high energy physics, nuclear science, IEEE Transactions on 55 (2008) 2425-2431, https://doi.org/10.1109/TNS.2008.2000776.
  11. M. Zhu, H. Qi, M. Pan, Q. Hou, B. Jiang, Y. Jin, H. Han, Z. Song, H. Zhang, Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals, J. Cryst. Growth 490 (2018) 51-55, https://doi.org/10.1016/j.jcrysgro.2018.03.015.
  12. F. Loignon-Houle, S.A. Charlebois, R. Fontaine, R. Lecomte, Monte Carlo simulations of energy, time and spatial evolution of primary electrons generated by 511 keV photons in various scintillators, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1030 (2022), https://doi.org/10.1016/j.nima.2022.166449.
  13. D.W. Cooke, K.J. McClellan, B.L. Bennett, J.M. Roper, M.T. Whittaker, R. E. Muenchausen, R.C. Sze, Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5, J. Appl. Phys. 88 (2000) 7360-7362, https://doi.org/10.1063/1.1328775.
  14. B. Wan, F. Yang, D. Ding, S. Zhao, J. Xie, L. Chen, J. Shi, Effects of yttrium content on intrinsic radioactivity energy spectra of LYSO:Ce crystals, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. (2021) 1001, https://doi.org/10.1016/j.nima.2021.165263.
  15. W. Yan, B. Li, B. Duan, G. Song, Y. Song, J. Ma, Temperature dependence of luminescence characteristics of LYSO:Ce scintillator under x-ray excitation, AIP Adv. 12 (2022), https://doi.org/10.1063/5.0091343.
  16. L.J. Meng, G. Fu, Investigation of the intrinsic spatial resolution of an intensified EMCCD scintillation camera, IEEE Trans. Nucl. Sci. 55 (2008) 2508-2517, https://doi.org/10.1109/TNS.2008.2004278.
  17. M. Holstensson, M. Partridge, S.E. Buckley, G.D. Flux, The effect of energy and source location on gamma camera intrinsic and extrinsic spatial resolution: an experimental and Monte Carlo study, Phys. Med. Biol. 55 (2010) 1735, https://doi.org/10.1088/0031-9155/55/6/013.
  18. J. Zhu, X. Ouyang, D. Chen, Monte Carlo study of spatial resolution of the scintillation camera, Sci. China Technol. Sci. 54 (2011) 2373-2376, https://doi.org/10.1007/s11431-011-4462-5.
  19. Y. Hirano, T. Zeniya, H. Iida, Monte Carlo simulation of scintillation photons for the design of a high-resolution SPECT detector dedicated to human brain, Ann. Nucl. Med. 26 (2012) 214-221, https://doi.org/10.1007/s12149-011-0561-4.
  20. D. Xianling, W.H.M. Saad, W.A.W. Adnan, S. Hashim, N.P.M. Hassan, A.J. Nordin, M.I. Saripan, Simulation of intrinsic resolution of scintillation camera in Monte Carlo environment, in: 2013 IEEE International Conference on Signal and Image Processing Applications, 2013, pp. 11-14, https://doi.org/10.1109/ICSIPA.2013.6707969.
  21. H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, M. Schmand, Monte Carlo simulation study of LSO crystals, IEEE Trans. Nucl. Sci. 51 (2004) 770-774, https://doi.org/10.1109/TNS.2004.829753.
  22. D.J. van der Laan, D.R. Schaart, M.C. Maas, F.J. Beekman, P. Bruyndonckx, C.W. E. van Eijk, Optical simulation of monolithic scintillator detectors using GATE/GEANT4, Phys. Med. Biol. 55 (2010) 1659-1675, https://doi.org/10.1088/0031-9155/55/6/009.
  23. J. Zhu, S. Niu, J. Ma, J. Zhao, L. Huang, Energy deposition of gamma rays in LSO crystal, High Power Laser Part Beams 22 (2010) 1351-1354, https://doi.org/10.3788/HPLPB20102206.1351.
  24. V.O. de Haan, T.H.J.J. van der Hagen, Optimisation of fast-neutron detection efficiency and spatial resolution for a radiographic imaging system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 515 (2003) 886-891, https://doi.org/10.1016/j.nima.2003.07.053.
  25. G. Song, K. Wang, J. Ma, M. Zhou, Analysis on coupling between scintillator and lens in radiographic imaging system, High Power Laser Part Beams 24 (2012) 471-475, https://doi.org/10.3788/HPLPB20122402.0475.
  26. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. DellAcqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J.G. Cadenas, I. Gonzˊalez, G.G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampˊen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P.M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. Oneale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E.D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 250-303, https://doi.org/10.1016/s0168-9002(03)01368-8.
  27. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M.G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tom'e, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J.P. Wellisch, D.C. Williams, D. Wright, H. Yoshida, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270-278, https://doi.org/10.1109/TNS.2006.869826.
  28. M. Asai, A. Dotti, M. Verderi, D.H. Wright, The GEANT4 collaboration, recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.anucene.2014.08.021.
  29. P. Arce, D. Bolst, M.C. Bordage, J.M.C. Brown, P. Cirrone, M.A. Cortes-Giraldo, D. Cutajar, G. Cuttone, L. Desorgher, P. Dondero, A. Dotti, B. Faddegon, C. Fedon, S. Guatelli, S. Incerti, V. Ivanchenko, D. Konstantinov, I. Kyriakou, G. Latyshev, A. Le, C. Mancini-Terracciano, M. Maire, A. Mantero, M. Novak, C. Omachi, L. Pandola, A. Perales, Y. Perrot, G. Petringa, J.M. Quesada, J. Ramos-Mendez, F. Romano, A.B. Rosenfeld, L.G. Sarmiento, D. Sakata, T. Sasaki, I. Sechopoulos, E. C. Simpson, T. Toshito, D.H. Wright, Report on G4-med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 medical simulation benchmarking group, Med. Phys. 48 (2020) 19-56, https://doi.org/10.1002/mp.14226.
  30. J. Apostolakis, M. Asai, A.G. Bogdanov, H. Burkhardt, G. Cosmo, S. Elles, G. Folger, V.M. Grichine, P. Gumplinger, A. Heikkinen, I. Hrivnacova, V.N. Ivanchenko, J. Jacquemier, T. Koi, R.P. Kokoulin, M. Kossov, H. Kurashige, I. McLaren, O. Link, M. Maire, W. Pokorski, T. Sasaki, N. Starkov, L. Urban, D.H. Wright, Geometry and physics of the Geant4 toolkit for high and medium energy applications, Radiat. Phys. Chem. 78 (2009) 859-873, https://doi.org/10.1016/j.radphyschem.2009.04.026.
  31. J.M.C. Brown, M.R. Dimmock, J.E. Gillam, D.M. Paganin, A low energy bound atomic electron Compton scattering model for Geant4, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 338 (2014) 77-88, https://doi.org/10.1016/j.nimb.2014.07.042.
  32. S. Chauvie, S. Guatelli, V. Ivanchenko, F. Longo, A. Mantero, B. Mascialino, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, M.G. Pia, M. Piergentili, P. P. Rodrigues, S. Saliceti, A. Tnndade, Geant4 low energy electromagnetic physics, IEEE Symposium Conference Record Nuclear Science 1883 (2004) 1881-1885, https://doi.org/10.1109/NSSMIC.2004.1462612, 3 (2004).
  33. S. Incerti, V. Ivanchenko, M. Novak, Recent progress of Geant4 electromagnetic physics for calorimeter simulation, J. Instrum. 13 (2018) C02054, https://doi.org/10.1088/1748-0221/13/02/C02054.