DOI QR코드

DOI QR Code

Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis

  • Ali Dalir Ghaffari (Department of Parasitology and Mycology, Faculty of Medicine, Shahed University) ;
  • Fardin Rahimi (Department of Medical biotechnology, Faculty of Medicine, Shahed University)
  • Received : 2024.01.31
  • Accepted : 2024.03.05
  • Published : 2024.04.30

Abstract

Purpose: Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods: Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results: The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion: In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.

Keywords

Acknowledgement

This study was financially supported by the Shahed Faculty of Medical Sciences, Tehran, Iran.

References

  1. Arab-Mazar Z, Fallahi S, Koochaki A, Haghighi A, Seyyed Tabaei SJ. Immunodiagnosis and molecular validation of Toxoplasma gondii-recombinant dense granular (GRA) 7 protein for the detection of toxoplasmosis in patients with cancer. Microbiol Res 2016;183:53-9.
  2. Javadi Mamaghani A, Seyyed Tabaei SJ, Ranjbar MM, et al. Designing diagnostic kit for Toxoplasma gondii based on GRA7, SAG1, and ROP1 antigens: an in silico strategy. Int J Pept Res Ther 2020;26:2269-83.
  3. KarimiPourSaryazdi A, Tavakoli P, Barati M, Ghaffarifar F, Ghaffari AD, KarimiPourSaryazdi Y. Anti-Toxoplasma effects of silver nanoparticles based on ginger extract: an in vitro study. J Arch Mil Med 2019;7:e104248.
  4. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363:1965-76.
  5. Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M. Antigenic properties of dense granule antigen 12 protein using bioinformatics tools in order to improve vaccine design against Toxoplasma gondii. Clin Exp Vaccine Res 2020;9:81-96.
  6. Hajissa K, Zakaria R, Suppian R, Mohamed Z. Immunogenicity of multiepitope vaccine candidate against Toxoplasma gondii infection in BALB/c mice. Iran J Parasitol 2018;13:215-24.
  7. Saadatnia G, Golkar M. A review on human toxoplasmosis. Scand J Infect Dis 2012;44:805-14.
  8. Zhang X, Yuan H, Mahmmod YS, et al. Insight into the current Toxoplasma gondii DNA vaccine: a review article. Expert Rev Vaccines 2023;22:66-89.
  9. Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M, Majidiani H. Immunoinformatic analysis of immunogenic Band T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach. Clin Exp Vaccine Res 2021;10:59-77.
  10. Zhang Z, Li Y, Wang M, et al. Immune protection of rhoptry protein 21 (ROP21) of Toxoplasma gondii as a DNA vaccine against toxoplasmosis. Front Microbiol 2018;9:909.
  11. Li Y, Zhou H. Moving towards improved vaccines for Toxoplasma gondii. Expert Opin Biol Ther 2018;18:273-80.
  12. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 2015;53:405-14.
  13. Hajissa K, Zakaria R, Suppian R, Mohamed Z. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: a mini-review. J Adv Vet Anim Res 2019;6:174-82.
  14. Tzen M, Benarous R, Dupouy-Camet J, Roisin MP. A novel Toxoplasma gondii calcium-dependent protein kinase. Parasite 2007;14:141-7.
  15. Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010;465:359-62.
  16. Foroutan M, Ghaffarifar F. Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine. Clin Exp Vaccine Res 2018;7:24-36.
  17. Huang SY, Chen K, Wang JL, Yang B, Zhu XQ. Evaluation of protective immunity induced by recombinant calcium-dependent protein kinase 1 (TgCDPK1) protein against acute toxoplasmosis in mice. Microb Pathog 2019;133:103560.
  18. Zhang NZ, Huang SY, Zhou DH, et al. Protective immunity against Toxoplasma gondii induced by DNA immunization with the gene encoding a novel vaccine candidate: calcium-dependent protein kinase 3. BMC Infect Dis 2013;13:512.
  19. Chen K, Wang JL, Huang SY, Yang WB, Zhu WN, Zhu XQ. Immune responses and protection after DNA vaccination against Toxoplasma gondii calcium-dependent protein kinase 2 (TgCDPK2). Parasite 2017;24:41.
  20. Zhang NZ, Xu Y, Wang M, et al. Vaccination with Toxoplasma gondii calcium-dependent protein kinase 6 and rhoptry protein 18 encapsulated in poly (lactide-co-glycolide) microspheres induces long-term protective immunity in mice. BMC Infectious Diseases 2016;16:1-11.
  21. Zhang NZ, Huang SY, Xu Y, et al. Evaluation of immune responses in mice after DNA immunization with putative Toxoplasma gondii calcium-dependent protein kinase 5. Clin Vaccine Immunol 2014;21:924-9.
  22. Chen J, Li ZY, Huang SY, et al. Protective efficacy of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) adjuvated with recombinant IL-15 and IL-21 against experimental toxoplasmosis in mice. BMC Infect Dis 2014;14:1-9.
  23. Wu M, An R, Chen Y, et al. Vaccination with recombinant Toxoplasma gondii CDPK3 induces protective immunity against experimental toxoplasmosis. Acta Trop 2019;199:105148.
  24. Wang Y, Wang G, Cai J, Yin H. Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res 2016;115:459-68.
  25. Ranjbar MM, Ahmadi NA, Ghorban K, et al. Immunoinformatics: novel view in understanding of immune system function, databases and prediction of immunogenic epitopes. Koomesh 2015;17:Pe18-26.
  26. Hammed-Akanmu M, Mim M, Osman AY, et al. Designing a multi-epitope vaccine against Toxoplasma gondii: an immunoinformatics approach. Vaccines (Basel) 2022;10:1389.
  27. Grote A, Hiller K, Scheer M, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 2005;33:W526-31.
  28. Rezaei F, Sarvi S, Sharif M, et al. A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2019;126:172-84.
  29. Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discov Today 2020;25:1034-42.
  30. Pittman KJ, Knoll LJ. Long-term relationships: the complicated interplay between the host and the developmental stages of Toxoplasma gondii during acute and chronic infections. Microbiol Mol Biol Rev 2015;79:387-401.
  31. Abass OA, Timofeev VI, Sarkar B, et al. Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria. J Biomol Struct Dyn 2022;40:7283-302.
  32. Patra P, Mondal N, Patra BC, Bhattacharya M. Epitopebased vaccine designing of Nocardia asteroides targeting the virulence factor Mce-family protein by immunoinformatics approach. Int J Pept Res Ther 2020;26:1165-76.
  33. Shamriz S, Ofoghi H, Moazami N. Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Comput Biol Med 2016;76:24-9.
  34. Laskowski RA, Jablonska J, Pravda L, Varekova RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci 2018;27:129-34.
  35. Khan M, Khan S, Ali A, et al. Immunoinformatics approaches to explore Helicobacter pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci Rep 2019;9:13321.
  36. Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw 2015;15:51-7.
  37. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 2013;65:1357-69.
  38. Dodangeh S, Daryani A, Sharif M, et al. A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis 2019;38:617-29.
  39. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000;30:1217-58.
  40. Wang P, Sidney J, Kim Y, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 2010;11:568.